期刊文献+

利用等效砌体材料模型分析爆炸荷载作用下砌体墙碎片尺寸分布 被引量:5

ANALYSIS OF FRAGMENT SIZE DISTRIBUTION OF MASONRY WALL UNDER BLAST LOADS USING HOMOGENIZED MASONRY MATERIAL
原文传递
导出
摘要 爆炸碎片导致的次生破坏和人员伤亡往往是巨大的,正确了解建筑物结构可能产生的碎片分布对其抗爆防爆设计至关重要。该文基于连续损伤力学和微裂缝发展的理论,提出了一种采用等效材料模型分析砌体墙结构在爆炸荷载作用下可能产生的碎片尺寸分布的数值方法,等效材料模型考虑了应变率对材料强度的影响。通过与材料精细模型的对比分析,证明了等效材料模型的可靠性;所提出的数值方法有效地提高了爆炸荷载作用下砌体墙碎片分布的计算效率,可用于预测砌体墙在一定爆炸事件中可能产生的碎片尺寸分布。 Secondary fragments caused by explosion events are likely to induce serious casualty and disaster, so it is important to predict the probable properties of produced fragment for structural explosion design. In this paper, a numerical method for predicting fragments caused by damage of masonry wall impacted by blast pressure is proposed, which is derived by the application of continuum damage mechanics and micro-crack development mechanics in finite element method, and a homogenized material model is employed to represent the general masonry material properties. In order to refine the material model, strain rate effect of material strength is taken into account. The results demonstrated in this paper reflect that the homogenized masonry material model is reliable and more efficient to calculate the fragment size distribution. It is concluded that this numerical method can be used to predict the fragment size distribution of masonry wall in blast events.
出处 《工程力学》 EI CSCD 北大核心 2010年第7期186-191,204,共7页 Engineering Mechanics
基金 国家自然科学基金重点项目(50638030) 国家科技支撑计划重点项目(2006BAJ13B02) 教育部新世纪优秀人才支持计划(NCET-06-0229)
关键词 砌体墙 碎片尺寸 连续损伤力学 微观裂缝理论 材料精细模型 等效材料模型 masonry wall fragment size continuum damage mechanics micro-crack mechanics refined material model homogenized material model
  • 相关文献

参考文献20

  • 1Shockey D A, Curran D R, Seaman L. Fragmentation of rock under dynamic loads [J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1974, 11 (8): 303 - 317.
  • 2Gronsten G A, Forsen R. Debris launch velocity from overloaded concrete cubicles [C]. Proceedings of International Symposium on Interaction of the Effects of Munitions with Structures. Orlando, Florida, 2007.
  • 3Yew C H, Taylor P A. A thermodynamic theory of dynamic fragmentation [J]. International Journal of Impact Engineering, 1994, 15(4): 385-394.
  • 4Grady D E. Particle size statistics in dynamic fragmentation [J]. Journal of Applied Physics, 1990, 68(12): 6099-6105.
  • 5Grady D E, Kipp M E. Continuum modeling of explosive fracture in oil shale [J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1980, 17(3): 147- 157.
  • 6Liu L Q, Katsabanis P D. Development of a continuum damage model for blasting analysis [J]. International Journal of Rock Mechanics and Mining Sciences and Geomeehanics Abstracts, 1997, 34(2): 217-231.
  • 7Zhang Y Q, Hao H, Lu Y. Anisotropic dynamic damage and fragmentation of rock materials trader explosive loading [J]. International Journal of Engineering Science, 2003, 41(9): 917-929.
  • 8Camaeho G T, Ortiz M. Computational modeling of impact damage in brittle materials [J]. International Journal of Solids and Structures, 1996, 33: 2899-2938.
  • 9Kun F, Herrmann H J. A study of fragmentation processes using a discrete element method [J]. Computer Methods in Applied Mechanics and Engineering, 1996, 138: 3-18.
  • 10Cusatis G, Bazant Z P, Cedolin L. Confinement-shear lattice CSL model for fracture propasation in concrete [J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195: 7154-7171.

同被引文献45

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部