期刊文献+

排除分析法及在电子线路混沌参数分析中的应用

Exclusion Method and Its Application to the Analysis of Chaotic Electronic Circuit
下载PDF
导出
摘要 提出了一种新的混沌解析分析方法:排除分析法.其基本思想是任何系统只有4种可能的解的形式,即常数解(平衡解)、周期解、概周期解和混沌解,如果排除了常数解(平衡解)、周期解、概周期解的存在,系统就只有一种可能,即出现混沌解,从而得到系统出现混沌的解析条件.将这一方法成功应用到Van der Pol—Duffing振荡器的分析中,改进了振荡器出现混沌的解析条件,并利用计算机仿真进行验证,表明结果完全正确.通过与Melnikov方法、Hopf分岔方法、不动点理论得到的结果比较发现,本文提出的排除分析法比以往经典的方法更精确,适应范围更为广泛.所提出的排除分析法可以适用于任何维数的自治系统和非自治系统,是一种新的混沌解析分析法. A new analytical analysis method for chaos : exclusion method is presented.Its basic idea is that for any systems,there are only four different solution types,that is,constant solutions(equilibrium solutions),periodic solutions,almost periodic solutions and chaotic solutions.If the parameter ranges corresponding to the solutions except chaotic solutions are excluded,the remaining parameter ranges are only the areas corresponding to chaotic solutions,and then the analytical conditions for the chaotic solutions are obtained.This new method is applied to Van der Pol-Dufing oscillator and new analytical conditions for chaotic solutions are obtained.The conclusions are proved correct by simulation.Compared with the previous results obtained by Melnikov method,Hopf bifurcation method,fixed points theory,the new results are much more accurate and has much better adaptation for different conditions.The exclusion method is adaptive for both autonomous systems and non-autonomous systems with any degrees,it is a new analytical analysis method for chaos.
出处 《湖南师范大学自然科学学报》 CAS 北大核心 2010年第2期48-53,共6页 Journal of Natural Science of Hunan Normal University
基金 国家自然科学基金资助项目(50477050)
关键词 混沌 排除分析法 VanderPol-Duffing振荡器 HOPF分岔 MELNIKOV方法 DUFFING方程 不动点理论 chaos exclusion analysis method Van der Pol-Deffing circuit Hopf bifurcation Melnikov method duffing equation fixed points theory
  • 相关文献

参考文献4

二级参考文献19

  • 1裴留庆,谢剑光,Leon O.Chua.含变容管的一个RL非线性电路中次谐波与混沌的研究[J].电子学报,1990,18(1):9-19. 被引量:2
  • 2肖达川.电路分析[M].北京:科学出版社,1984..
  • 3[2]华东师大数学系.数学分析(上).北京:高等教育出版社,1981
  • 4李骊,强非线性动力系统定性理论与定量方法,1996年
  • 5Y.Ueda,Random Phenomena Resulting from Nonlinearity in the System Duffing's Equation,Int J Nonlinear Mechanics,Vol.20,No.5-6,1985,481-191.
  • 6裴留庆,谢剑光.L O.Chua,Investigation on Subbarmoics and Chaos in a Nonlinear RL-Varactor Circuit,电子学报,Vol,18,No.1,1990,9-19.
  • 7T L.Carroll,Communicating with Use of Filtered,Synchroniaed,Chaotic Signals,IEEE Trans,Circuits and syst I,Vol.42,No.3,1995,105-110.
  • 8P.Holmes,A,Nonlinear Oscillator with a Strange Attractor,Phil Trans.Roy Soc A,Vol 292,No.1394,1979,419-448.
  • 9J.Guckenheimer,and P.Homles,Nonlinear Oscillations,Dynamical Systems,and Bifurcations of Vector Fields,Springer-Verlag,New York,1983.
  • 10S.Wiggins,Chaos in the Quasiperiodically Forced Duffing Oscillator,Phys Lett A,Vol.124,No.3,1988,138-142.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部