期刊文献+

基于峭度的FastICA改进算法 被引量:1

An Improved Kurtosis FastICA Algorithm
下载PDF
导出
摘要 独立分量分析(ICA)是信号处理技术的新发展,而FastICA是独立分量的一种快速算法,因其收敛速度快而备受关注,但存在步长μ选取不当可能导致算法收敛速度减慢甚至不收敛的问题,本文提出了一种改进的优化学习算法,在牛顿迭代方向上增加精确线性搜索,从而使得算法的收敛性不依赖于μ的人为选择.将改进的FastICA算法应用到语音信号处理中,结果表明该方法迭代次数大大少于FastICA算法,具有收敛速度快的特点. Independent component analysis(ICA) is a new development of signal processing technology.FastICA is a fast algorithm of ICA.As its fast convergence,it has attracted broad attraction,but if step-size μ was chose incorrectly,the algorithm may be having slow convergence even no convergence.To overcome the drawbacks and improve the learning algorithm,exact line search was imposed on the direction of Newton iterative.The improved algorithm can ensure the convergence of the results and is robust to μ.When the improved algorithm is used to separate audio signal,the experimental results show it has fast convergence and is robust to outline.
作者 刘辉 高巧玲
出处 《湖南师范大学自然科学学报》 CAS 北大核心 2010年第2期54-58,共5页 Journal of Natural Science of Hunan Normal University
基金 国家自然科学基金资助项目(20927005)
关键词 独立分量分析 快速独立分量分析 峭度 精确线性搜索 independent component analysis FastICA kurtosis exact line seatch
  • 相关文献

参考文献8

  • 1COMON P.Independent component analysis,a new concept?[J].Signal Processing,Special Issue on Higher-Order Statistics,1994,36(3):287-314.
  • 2CARDOSO J F.Blind signal separation:statistic principles[J].Proceeding of the IEEE,1998,86(10):2 009-2 005.
  • 3HYVARINEN A,KARHUNEN J,OJA E.Independent component analysis[M].New York:John Wiley & Sons,2001.
  • 4ZARZOSO V,COMON P.Comparative speed analysis of FastICA[C].In Proc.ICA-2007,7th International Conference on Independent Component Analysis and Signal Separation,London,UK,Sept.9-12,2007.
  • 5HYVARINEN A,OJA E.A fast fixed-point algorithm for independeqt component analysis[J].Neural Computation,1997,9(7):1 483-1 492.
  • 6HYVARINEN A.Fast and robust fixed-point algorithms for independent component analysis[J].IEEE Transactions on Neural Networks,1997,10(3):626-634.
  • 7HYVAIUNEN A.A family of fixed-point algorithms for independent component analysis[C].In Proc.IEEE Neural Networks for Signal Processing(NNSP)Workshop,Amelia Island,FL,1997:388-397.
  • 8ZARZOSO V,COMON P,KALLEL M.How fast is EastICA?[C].In:Proc.EUSIPCO-2006,XIV European Signal Processing Conference,Florence,Italy,September 4-8,2006.

同被引文献9

  • 1余先川,胡丹.盲源分离理论与应用[M].北京:科学出版社.2011:1.10.
  • 2Jutten C, Herauh J. Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture [J]. Signal Processing, 1991(24):1-10.
  • 3Murata N, Kawanabe M, Ziehe A, et al. On-line learning in changing environments with applications in supervised and unsupervised learning [J]. Neural Networks the Official Journal of the International Neural Network Society, 2002, 15(4):743-760.
  • 4Hyvarinen A. A Fast Fixed-point Algorithm for Independent Component Analysis [J]. Neural Computation, 1997, 9(7):148-149.
  • 5Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis [J]. IEEE Transactions on Neural Networks, 1999, 10(3):626-634.
  • 6Zarzoso V, Comon P. Robust independent componentanalysis [EB/OL]. http://www.i3s.unice. fr/~zarzoso/biblio/repO9robustica.pdf.
  • 7RobustICA package [EB/OL]. http://www.i3s.unice. fr/-zarzoso/robustica.html.
  • 8吴微,彭华,张帆.FastICA和RobustICA算法在盲源分离中的性能分析[J].计算机应用研究,2014,31(1):95-98. 被引量:18
  • 9陈国钦.一种基于峭度累积量比例微分控制的盲源分离学习率[J].电子学报,2015,43(5):929-934. 被引量:4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部