摘要
介绍了小波阈值去噪的基本原理,针对软、硬阈值化方法在图像处理上存在的边界模糊和振荡等失真的不理想情况,采用了一个新的阈值化构造函数。该函数运用了阶次调节因子和振荡调整因子,能分别对作用对象进行动态修正,以获得较优的小波系数的阈值估计。仿真试验表明,采用该阈值化函数的小波包消噪方法能对带噪图像进行有效去噪,对比实验统计表明,其性能优于传统的阈值化方法。
In this paper, the theory of wavelet threshold de-noising has introduced, and a new threshold function was presented, in order to overcome distortions of hard and soft threshold with oscillation and borderline blurred. Regulatory factor of Order and oscillation adjustment factor are important in this new function; they can be adjusted properly to produce the best estimations of the wavelet coefficients. The outcome of experiments indicates that the new wavelet packets threshold algorithm can de-noise efficiently and statistics shows the improved method can obtain the best de-noising effects by adjusting the parameter values compared with traditional threshold functions.
出处
《西安科技大学学报》
CAS
北大核心
2010年第4期479-483,共5页
Journal of Xi’an University of Science and Technology
关键词
小波阈值
图像去噪
阈值算法改进
峰值信噪比
wavelet-threshold
image de-noising
improved threshold algorithm
peak signal to noise ratio