期刊文献+

图像识别中的兴趣点匹配方法研究 被引量:5

Fast matching algorithm based on interest points
下载PDF
导出
摘要 针对图像检索识别的需求,提出了一种基于兴趣点的匹配算法,利用小波变换对图像进行降维和去噪,提取其SIFT点特征,同时进行PCA降维,最后采用基于K-d树的最近邻法进行快速匹配。通过对各种图像大量的实验,结果表明,该方法具有很强的匹配性和鲁棒性,是一种较好的图像匹配算法,可以广泛应用于图像的检索和识别中。 According to the need of the image searches and recognition,one kind of the matching algorithm based on interest points has been brought forward,firstly making use of wavelet transform to realize image dimension reduction and de-noising, extracting its SIFT characteristic points,and finally carrying out matching using nearest neighbor method based on K-d tree.Adopting the algorithm to carry out large numbers of experiments to many kinds of images,final results indicate that the algorithm is superior,has strong matching ability and robustness,is one kind of fairly good image matching algorithm and can be wildly applied to image retrieval and recognition field.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第5期132-135,共4页 Computer Engineering and Applications
关键词 兴趣点 SIFT算法 主成分分析(PCA) 快速匹配 interest points SIFT algorithm Principal Component Analysis(PCA) fast matching
  • 相关文献

参考文献2

二级参考文献19

  • 1牛刚,梁伟.基于特征像素统计的图像相关匹配算法[J].微计算机信息,2005,21(11X):103-104. 被引量:17
  • 2Harris C.G., Stephens M. A combined comer and edge detectol In 4th Alvey Vision Conference, 1988, 147-151.
  • 3Smith S.M., Brady J.M. SUSAN-A new approach to low level image processing [J]. International Journal of Computer Vision, 1997, 23 (1): 45-78.
  • 4Edelman S., Intrator N. and Poggio T. Complex cells and object recognition, 1997. Unpublished manuscript: http://kybele.psych. comell.edu/-edelman/archive.html
  • 5Lowe D.G. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision, 2004, 60 (2): 91-110.
  • 6Lowe D G.Object Recognition from Local Scale-invariant Features[A].Proc.of the 7th International Conference on Computer Vision[C].Greece,1999:1150-1157.
  • 7Lowe D G.Distinctive Image Features from Scale Invariant Keypoints[J].Int.J.Computer Vision,2004,60(2):91-110.
  • 8Schmid C,Mohr R.Evaluation of Interest Point Detectors[J].International Journal of Computer Vision,2000,37(2):151-172.
  • 9Mikolajczyk K,Schmid C.A Performance Evaluation of Local Descriptors[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,2005,27(10):1615-1630.
  • 10Josef S,Andrew Z.Video Google:A Text Retrieval Approach to Object Matching in Videos[A].Proc.of the 9th International Conference on Computer Vision[C].France,2003:1470-1477.

共引文献38

同被引文献61

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部