期刊文献+

基于新的MRSVM说话人辨识方法

Speaker identification method based on novel MRSVM
下载PDF
导出
摘要 提出一个新的基于MRSVM的说话人辨识方法,首先对语音特征矢量进行LDA降维,得到具有区分力的特征矢量,然后对其进行模糊核聚类,根据样本选择算法,选择聚类边界的特征矢量作为支持向量训练支持向量机,在不影响识别率的情况下,大大减少了支持向量机的存储量和训练量。实验表明该方法具有较好的总体效果。 A speaker identification method is proposed based on a novel Multi-Reduced Support Vector Machine(MRSVM).Firstly,speech feature dimensions are reduced by using LDA transform;Secondly,the training data are selected at boundary of each cluster as Support Vectors(SVs) by using kernel-based fuzzy clustering technique.The experiment results show that the training data,time and storage can be reduced remarkably by using the proposed method without deteriorating recognition performance.The method is proved to be effective by the experiments.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第5期136-139,共4页 Computer Engineering and Applications
基金 中山火炬职业技术学院校级基金No.2009Y23~~
关键词 多约简支持向量机 模糊核聚类 说话人辨识 LDA变换 Multi-Reduced Support Vector Machine(MRSVM) kernel-based fuzzy clustering speaker identification LDA transform
  • 相关文献

参考文献11

  • 1Burges C I C.A tutorial on suport vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998,2(2):121-167.
  • 2Liu Ming-hui,Xie Yan-lu,Yao Zhi-qiang,et al.A new hybrid GMM/SVM for speaker cerification[C] //The 18th International Conference on Pattem Recognition,2006,4:314-317.
  • 3Mashao D.A hybrid GMM-SVM speaker identification system[C] //7th AFRICON Conferences in Africa,2004,1:319-322.
  • 4Zheng Song-feng,Lu Xiao-feng,Zheng Nan-ning,et al.Uusupervised clustering based reduced support vector machlnes[C] //The Institute of Artificial Intelligence and Robotics,ICASSP,2003(Ⅱ):821-824.
  • 5武方方,赵银亮,蒋泽飞.基于密度聚类的支持向量机分类算法[J].西安交通大学学报,2005,39(12):1319-1322. 被引量:11
  • 6Wu Fang-fang,Zhao Yin-liang.A novel multi-reduced support vector machine.neural networks and brain[C] //ICNN & B International Conference,2005,1:322-326.
  • 7Lee Y J,Manegasarian O LRSVM:Reduced support vector machine[R].Data Mining Inst,Comp Sci Dept,Univ Wisconsin,Madison,WI,2000.
  • 8Sun Sheng-yu,Tseng C L,Chen Y H,et at.Cluster-besed support vector machines in text-independent speaker identification[C] //Neural Networks,2004 IEEE International Joint Conference,2004,1(2):729-734.
  • 9Fukunaga K.Introduction to statistical pattern recognition[M].2nd ed.New York:Academic Press,1990.
  • 10Wang Jiun-hau,Lee Wan-jui,Lee Shie-jue.A kernel-based fuzzy clustering algorithm[C] //Proceedings of the 1st International Conference on Innovative Computing,Information and Control,2006.

二级参考文献6

  • 1Vapnik V. The nature of statistical learning theory[M]. New York: Springer-Verlag, 1995.
  • 2Burges C J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998, 2(2): 955-974.
  • 3Bernhard S, Sung K K. Comparing support vector machines with Gaussian kernels to radical basis function classifiers[J]. IEEE Transaction on Signal Processing, 1997, 45(11): 2 758-2 765.
  • 4Edgar O, Robert F, Federico G. Training support vector machines: an application to face detection[A]. IEEE Conference on Computer Vision and Pattern Recognition, San Juan, Puerto Rico, 1997.
  • 5张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2272
  • 6李晓黎,刘继敏,史忠植.基于支持向量机与无监督聚类相结合的中文网页分类器[J].计算机学报,2001,24(1):62-68. 被引量:108

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部