期刊文献+

推广GAC模型在运动目标分割中的应用 被引量:1

Application of promotion GAC model in moving object segmentation
下载PDF
导出
摘要 针对视频序列运动目标的分割,研究了传统的运动目标检测算法和基于推广GAC模型的图像分割算法的优势和缺陷,并将二者进行系统的结合,由"粗"到"细"地实现了对运动目标边缘的精确分割。实验表明,算法简单有效,在保证目标分割实时性的前提下,发挥了推广GAC模型在目标分割中的优势。 For the segmentation of moving object in video sequence,the advantages and drawbacks of the traditional moving object detection algorithm and the image segmentation based on the promotion GAC model are researched.Both algorithms are combined in the system and the edge of the object is segmented accurately from"rough state"to"fine contour".Experiment results indicate that the algorithm is simple and effective.On the premise of the real-time capability of the object segmentation,it exerts the advantages of the promotion GAC model in the areas of object segmentation.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第5期145-147,共3页 Computer Engineering and Applications
基金 陕西省自然科学基金No.F0306~~
关键词 推广的GAC模型 运动目标分割 运动目标检测 promotion GAC model moving object segmentation moving object detection
  • 相关文献

参考文献11

  • 1Anderson C,Burt P,van der Wal G.Change detection and tracking using pyramid transformation techniques[C] //Proceedings of SPIE-Intelligent Robots and Computer Vision,1985,579:72-78.
  • 2Haritaoglu I,Dads L S,Harwood D.W4:who?when?where?what?A real time system for detecting and tracking people[C] //Japan:International Conference on Face and Gesture Recognition,1998.
  • 3Wren C,Azarbayejani A,Darrell T,et al.Pfinder:Beal-time tracking of the human body[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):780-785.
  • 4Barton J,Fleet D,Beauchemin S.Performance of optical flow techniques[J].International Journal of Computer Vision,1994,12(1):42-77.
  • 5Kim B,Kim H J.Efficient region-based motion segmentation for video monitoring system[J].Pattem Recognition Letters,2003,24:113-128.
  • 6王宾 潘建寿 梁雁冰.基于Matrox卡的视频图像运动检测[J].西北大学学报,2004,2(3):1-7.
  • 7Caselles V,Kimmel R,Sapiro G.Geodesic active contours[C] //Proceedings 5th International Conference on Computer Vision,Boston,MA,USA,1995:694-699.
  • 8Caselles V,Kimmel R,Sapirp G.Geodesic active contours[J].International Journal of Computer Vision,1997,22(1):61-79.
  • 9彭进业,郝重阳,齐华,齐敏.基于多尺度梯度矢量场GAC模型的MR医学图像分割[J].中国图象图形学报,2007,12(7):1214-1217. 被引量:2
  • 10Chang D H,Sapiro G.On the level lines and geometry of vectorvalued images[J].IEEE SP Lett,2000,7(9):241-243.

二级参考文献10

  • 1Castlemen K R.Digital Image Processing[M].New Jersey,USA:Prentice Hall,1996:452-669.
  • 2Adams R,Bischof L.Seeded region growing[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1994,16 (6):641-647.
  • 3Canny J F.A computational app roach to edge detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1986,8(6):679-698.
  • 4Sapiro C.Geometric Partial Differential Equations and Image Analysis[M].London; Cambridge University Press,2002.
  • 5Kass M,Witkin A,Terzopoulos D.Snakes; Active contour models[J].International Journal of Computer Vision,1988,1(4):321-331.
  • 6Caselles V,Kimmel R,Sapiro G,Geodesic active contours[A].In:Proceedings 5th International Conference on Computer Vision[C],Boston,MA,USA,1995:694-699.
  • 7Caselles V,Kimmel R,Sapiro G.Geodesic active contours[J].International Journal of Computer Vision,1997,22(1):61-79.
  • 8Chung D H,Sapiro G,On the level lines and geometry of vectorvalued images[J].IEEE Signal Processing Letter,2000,7(9):241-243.
  • 9Sumengen B,Manjunath B S.Edgeflow-driven Variational Image Segmentation:Theory and Performance Evaluation[DB/OL].http;// vision,ece.ucsb.edu/publications/OSTechRepBaris.pdf,2005-05-31.
  • 10Peng Jin-ye,Yang Wan-hai,Wang Yi-chun.Multiscale gradient vector field with application to image denoising and enhancement[A].In:IEEE Proceedings on IIH-MSP'06[C/CD],California,USA,2006; 04041689.pdf.

共引文献6

同被引文献10

  • 1Gonzalez R C.数字图像处理[M].北京:电子工业出版社,2003.467—470.
  • 2Yi K M,Ahn H S,Choi J Y.Orientation and scale in- variant mean shift using object mask-based kernel[C]// Int'l Conf on Pattern Recognition,2008 : 1-4.
  • 3陈超.基于新特征的AdaBoost色情图片检测[D].南宁:广西民族大学,2011:6.25.
  • 4Shen Chunhua,Kim Junae,Wang Hanzi.Generalized ker- nel-based visual tracking[J].lEEE Transactions on Circuits and Systems fbr Video Technology, 2010,20( 1 ) : 119-130.
  • 5Viola P, Jones M.Rapid object detection using a boosted cascade of simple features[C]//IEEE Computer Society Conference on Computer,2001.
  • 6Yi K M,Ahn H S,Choi J Y.Orientation and scale in- variant kernel-based object tracking with probabilistic emphasizing[C]//LNCS 5995 : ACCV 2009, Part 11,2010 : 130-139.
  • 7Comaniciu D, Ramesh V, Meer P.Kernel-based object tracking[J].IEEE Trans on Pattern Analysis and Machine Intelligence, 2003 (25) : 564-575.
  • 8马义德,朱望飞,安世霞,邱会银,汤书森.改进的基于高斯混合模型的运动目标检测方法[J].计算机应用,2007,27(10):2544-2546. 被引量:39
  • 9赵春晖,张洪才,陆朝霞.一种基于三角特征的行人检测算法[J].计算机工程与应用,2008,44(7):202-205. 被引量:4
  • 10邓梁,刘曼玲,范洁.针对凹陷轮廓改进的主动轮廓模型[J].计算机工程,2009,35(15):215-216. 被引量:3

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部