期刊文献+

基于层次HMM的运动目标分割 被引量:2

HMM segmentation method based on statistical layered model for image of vehicle
下载PDF
导出
摘要 提出对差分图像用三层统计模型表示的思想:前景运动汽车层、背景运动汽车层和运动阴影层,并分别建立了各层的统计模型,应用HMM对运动图像序列进行模型参数估计,通过模型进行运动汽车分割。HMM利用图像序列帧之间的图像像素空间相关性和时间相关性,从而完成模型参数的识别。通过MAP算法完成模型参数具体化,不但用模型完成图像前景目标的分割,同时在分割中自然区别了背景运动目标和阴影,实现了复杂背景图像的运动汽车分割。实验结果表明方法能够有效地完成分割目的。 An HMM segmentation method based on statistical layered model for an image including interest vehicle is brought forward.In statistical layered model,the interest vehicle is called foreground layer and the moving object is called background layer and shadow of moving objects is called shadow layer and they are expressed by the statistical model respectively.The model parameters are estimated by the HMM-based method of video sequences.HMM-based method makes use of the spatial relativity and time relativity of video sequences to accomplish recognition of model.The experimental results show that this method can succeed in segmenting the moving vehicle.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第5期162-165,共4页 Computer Engineering and Applications
基金 国家自然科学基金No.60475040 河南省教育厅科技攻关项目No.2008A520022~~
关键词 分层模型 隐马尔可夫模型 运动汽车分割 statistical layered model Hidden Markov Models(HMM) moving vehicle segmentation
  • 相关文献

参考文献6

  • 1Haritaoglu I,Harwood D,Davis L S.W4-a real time system for detection and tracking people and their parts[C] //Proc 3rd Face and Gesture Recognition Conf,1998:222-227.
  • 2Rowe S,Blake A.Statistical mosaics for tracking[J].Image and Vision Computing,1996,14:549-564.
  • 3Toyama K,Krumm J,Brummit B,et al.Principles and practice of background maintenance[C] //Proc 7th Int'1 Conf Computer Vision,1999:255-261.
  • 4金军.基于子块的区域生长的彩色图像分割算法[J].计算机工程与应用,2008,44(1):82-83. 被引量:6
  • 5Kato D.An HMM-based segmentation method for traffic monitoring movies[J].IEEE Trans PAMI,2002,24(9).
  • 6李旭超,朱善安,朱胜利.基于小波域层次Markov模型的图像分割[J].中国图象图形学报,2007,12(2):308-314. 被引量:12

二级参考文献18

  • 1李庆忠,石巍,褚东升.一种融合聚类与区域生长的彩色图像分割方法[J].计算机工程与应用,2006,42(14):76-78. 被引量:8
  • 2Geman S,Geman D.Stochastic relaxation,gibbs distributions,and the bayesian restoration of images[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1984,6 (6):721 - 741.
  • 3Max Mignotee,Christophe Collet,Patrick P,et al.Sonar image segmentation using an unsupervised hierarchical MRF model[J].IEEE Transactions on Image Processing,2000,9 (7):1216 - 1231.
  • 4Bouman CA,Shaapiro M.A multiscal random field model for Bayesian image segmentation[J].IEEE Transactions on Image Processing,1994,3(2):162 - 177.
  • 5Matthew S Crouse,Robert D Nowak,Richard G Baraniuk.Waveletbased statistical signal processing using hidden markov models[J].IEEE Transactions on Signal Processing,1998,46(4):886 -902.
  • 6Justin K Romberg,Hyeokho Choi,Richard G Baraniuk.Bayesian tree-structured image modeling using wavelet-domain hidden markov models[J].IEEE Transactions on Image Processing,2001,10(7):1056 - 1068.
  • 7Hyeokho Choi,Richard G Baraniuk.Multiscale image segmentation using wavelet-domain hidden Markov models[J].IEEE Transactions on Image Processing,2001,10(9):1309 - 1321.
  • 8Jien Kato,Joga S,Rittscher J,et al.An HMM-Based segmentation method for traffic monitoring movies[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24 (9):1291 -1296.
  • 9Chang S Grace,Yu B,Martin Vetterli.Adaptive wavelet thresholding for image denoising and compression[J].IEEE Transactions on Image Processing,2000,9(9):1532 - 1546.
  • 10Ulaby F T,Kouyate F.Texture information in SAR images[J].IEEE Transactions on Geoscience Remote Sensing,1986,24 (2):235 -245.

共引文献16

同被引文献25

  • 1彭培华,曲波,陈荣胜.基于支持向量机的小波域视频字幕检测与提取[J].华南理工大学学报(自然科学版),2004,32(z1):63-66. 被引量:4
  • 2张响亮,王伟,管晓宏.基于隐马尔可夫模型的程序行为异常检测[J].西安交通大学学报,2005,39(10):1056-1059. 被引量:16
  • 3黄贤武,朱莉,仲兴荣,王加俊.一种新的基于时空马尔可夫随机场的运动目标分割技术[J].电子与信息学报,2006,28(2):367-371. 被引量:10
  • 4DudaRO HartPE DavidG. Stork著 李宏东 姚天翔等译.模式分类[M].北京:机械工业出版社,2003..
  • 5Lu Xiaodong, Zhou Jun, I-Ie Yuanjun. Image segmentation based on an improved GA-MRF with dynamic weights [ C ] //Proceedings of the 2nd International Conference on Advanced Computer Control. Shenyang : IEEE ,2010 :458-461.
  • 6Lafferty J D, McCallum A, Pereira F C N. Conditional ran- dom fields: probabilistic models for segmenting and labe- ling sequence data [ C] //Proceeding of the 18th Interna- tional Conference on Machine Learning. San Francisco: Morgan Kaufmann Publishers Inc,2001:282-289.
  • 7Sun Xiao, Nan Xiaoli. Chinese base phrases chunking based on latent semi-CRF model [ C ] //Proceedings of International Conference on Natural Language Processing and Knowledge Engineering. Beijing : IEEE,2010 : 1-7.
  • 8Wang Y, Ji Q. A dynamic conditional random field model for object segmentation in image sequences [ C ] //Pro- ceedings of IEEE Computei Society Conference on Com- puter Vision and Pattern Recognition. Washington D C: IEEE,2005 : 264- 270.
  • 9Wang Y, Loe K F, Wu J K. A dynamic conditional random field model for foreground and shadow segmentation [J]. IEEE Transaction on Pattern Analysis and Machine Inte- lligence, 2006,28 ( 2 ) : 279- 289.
  • 10Wu J F, Djuric P M. Unsupervised vector image segmen- tation by the ICM method [ C ] //Proceedings of IEEE International Conference on Acoustics, Speech, and Sig- nal Processing. Atlanta : IEEE, 1996:2235-2238.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部