期刊文献+

面向粒子群优化的贝叶斯网络结构学习算法 被引量:3

Structure learning algorithm of Bayesian networks on particle swarm optimization
下载PDF
导出
摘要 提出了一种基于离散粒子群优化的贝叶斯网络结构学习算法——PSBN(Particle Swarm for Bayesian Network)。贝叶斯网络的结构被映射为一种符号编码,通过在迭代过程中对粒子的符号编码进行调整,从而进化得到具有更高适应度值的贝叶斯网络结构。根据贝叶斯网络的结构特点,粒子位置和速度的编码方案和基本操作被设计,使得算法对贝叶斯网络的结构学习有较好的收敛性。实验结果表明,与基于遗传算法的贝叶斯网络结构学习算法相比,PSBN算法具有较好的学习效果。 A discrete PSO(Particle Swarm Optimization) based Bayesian network structure learning algorithm—PSBN(Particle Swarm for Bayesian Network) is proposed.A fitness function is given to evaluate the possible BN structure.Based on the characteristics of BN structure,the definition and encoding of the position and velocity of particle in PSO are given,and the basic operations of PSO are designed,which provides guarantee of convergence.As BN structure is considered as a symbol encoding,the BN structure having higher fitness values can be gotten by changing the symbol encoding of particles.The experimental results show this algorithm has better performance than the BN structure learning algorithm based on genetic algorithm.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第20期193-196,共4页 Computer Engineering and Applications
基金 国家重点基础研究发展规划(973)No.2004CB719400~~
关键词 贝叶斯网络 粒子群优化 适应度函数 结构学习 符号编码 Bayesian network particle swarm optimization fitness function structure learning symbol encoding
  • 相关文献

参考文献14

  • 1Kennedy J,Eberhart R C.Particle swarm optimization[C] //Proc IEEE Int Conf on Neural Networks.Piscataway,NJ:IEEE Service Center,1995,IV:1942-1948,.
  • 2Kennedy J,Eberhart R C.A discrete binary version of the particle swarm algorithm[C] //Proceedings of IEEE International Conference on Systems,Man,and Cybernetics.Piscataway,NJ:IEEE Press,1997:4104-4108.
  • 3Clerc M.Discrete particle swarm optimization illustrated by the traveling salesman problem[M] //New Optimization Techniques in Engineering.Heidelberg,Germany:Springer,2004:219-239.
  • 4Al-Kazemi B,Mohan C K.Multi-phase generalization of the particle swarm optimization algorithm[C] //Proceedings of the 2002 Congress on Evolutionary Computation,CEC'02,2002,1:489-494.
  • 5Yang Shu-yuan,Wang Min.A quantum particle swarm optimization[C] //Proceedings of the 2004 Congress on Evolutionary Computation,CEC'04,2004,1:320-324.
  • 6Monson C K,Seppi K D.Bayesian optimization models for particles swarms[C] //Proc Seventh Genetic and Evolutionary Computation Conference,Washington,DC,USA,June 2005:25-29.
  • 7孙岩,唐一源.具有丢失数据的贝叶斯网络结构学习算法[J].计算机工程与设计,2008,29(1):142-143. 被引量:3
  • 8许丽佳,黄建国,王厚军,龙兵.混合优化的贝叶斯网络结构学习[J].计算机辅助设计与图形学学报,2009,21(5):633-639. 被引量:14
  • 9刘欣,贾海洋,刘大有.基于粒子群优化算法的Bayesian网络结构学习[J].小型微型计算机系统,2008,29(8):1516-1519. 被引量:7
  • 10Lauritzen S L,Spiegelhalter D J.Local computations with probabilities on graphical structures and their application On expert systems[J].J.Royal Statistical Soc B,1990,50(2):157-224.

二级参考文献20

  • 1王双成,苑森淼.具有丢失数据的贝叶斯网络结构学习研究[J].软件学报,2004,15(7):1042-1048. 被引量:62
  • 2Friedman N.The Bayesian structural EM algorithm[C]//Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence,San Francisco,1998:129-138
  • 3Cooper G F,Herskovits E.A Bayesian method for the induction of probabilistic networks from data[J].Machine Learning,1992,9(4):309-347
  • 4Chickering D M.Optimal structure identification with greedy search[J].Journal of Machine Learning Research,2002,11(3):507-554
  • 5Larranaga P,Poza M,Yurramendi Y,et al.Structure learning of Bayesian networks by genetic algorithms:a performance analysis of control parameters[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,18(9):912-926
  • 6Wong M L,Leung K S.An efficient data mining method for learning Bayesian networks using an evolutionary algorithm-based hybrid approach[J].IEEE Transactions on Evolutionary Computation,2004,8(4):378-404
  • 7Shetty S,Song M.Structure learning of Bayesian network using a semantic genetic algorithm-based approach[C]//Proceedings of the 3rd International Conference on Information Technology:Research and Education,Hsinchu,2005:454-458
  • 8Sahin F,Yavuz M,Arnavu Z,et al.Fault diagnosis for airplane engines using Bayesian networks and distributed particle swarm optimization[J].Parallel Computing,2007,11(33):124-143
  • 9Chow C,Liu C.Approximation discrete probability distributions with dependence trees[J].IEEE Transactions on Information Theory,1968,14(3):462-467
  • 10[1]Chickering D M,Herkerman D,Meek C.Large-sample learning of Bayesian networks is NP-Hard[J].Journal of Machine Learning Research,2004,5:1287-1330.

共引文献20

同被引文献26

  • 1杨有龙,吴艳.基于进化算法的贝叶斯网络度量[J].兵工学报,2004,25(5):586-590. 被引量:6
  • 2俞欢军,许宁,张丽平,胡上序.混合粒子群优化算法研究[J].信息与控制,2005,34(4):500-504. 被引量:18
  • 3段海滨,张祥银,徐春芳.仿生智能计算[M]. 北京:科学出版社, 2011: 715..
  • 4Chickering D M, Herkerman D, Meek C. Large sam- ple learning of Bayesian networks is NP-Hard[J]. Journal of Machine Learning Research, 2004, 5: 1287-1330.
  • 5Kennedy J, Eberhart R. Particle swam optimization [C] // Proceeding of IEEE International Conference on Neural Networks. Piscataway: IEEE Service Center, 1995: 1942-1948.
  • 6Eberhart R, Kennedy J. A new optimizer using parti- cle swarm theory[C] // Proceedings of the 6th Inter- national Symposium on Micro-machine and Human Science. Piscataway: IEEE Service Center, 1995: 39- 43.
  • 7Eberhart R, Kennedy J. Discrete binary version of the particle swarm algorithm [C] // Proceeding of IEEE International Conference on Systems, Man and Cybernetics. Orlando.. IEEE Service Center, 1997:4104-4108.
  • 8Clerc M. Discrete particle swarm optimization illus- trated by the traveling salesman problem[M]. Hei- delberg: Springer, 2004: 219-239.
  • 9Henrion M. Propagating uncertainly in Bayesian networks by probabilities logic sampling[M]. Am sterdam: North Holland, 1988: 149-163.
  • 10Lauritzen S L, Spiegelhalter D J. Local computa- tions with probaglilities on praghical structures anti their application on expert systems[J]. J Royal Sla tistieal Soc B, 1990, 50(2): 157-224.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部