期刊文献+

非高斯噪声下基于MD准则与Givens旋转的EP信号提取方法 被引量:2

Estimation of Evoked Potentials Based on MD Criterion and Givens Matrix in Non-Gaussian Noise Environments
原文传递
导出
摘要 传统的诱发电位(EP)提取与分离方法中,通常认为EP信号中混入的自发脑电(EEG)等噪声属于高斯分布。近年来一些研究表明了EEG信号具有一定的非高斯特性。α-稳定分布可以更好地描述实际应用中所遇到的具有显著脉冲特性的EEG噪声。本文提出一种适用于EP信号分离提取的基于最小分散系数准则与旋转变换的算法。计算机模拟和分析表明,在分数低阶稳定分布背景噪声条件下,这种算法是一种具有良好韧性的EP信号分离提取方法。 Traditional EP analysis is developed under the condition that the background noises in EP are Gaussian distributed. Alpha stable distribution,a generalization of Gaussian,is better for modeling impulsive noises than Gaussian distribution in biomedical signal processing. Conventional blind separation and estimation method of evoked potentials is based on second order statistics (SOS). In this paper,we propose a new algorithm based on minimum dispersion criterion and Givens matrix. The simulation experiments show that the proposed new algorithm is more robust than the conventional algorithm.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2010年第3期495-499,共5页 Journal of Biomedical Engineering
基金 国家自然科学基金资助项目(60772037) 江西省教育厅科技项目资助(GJJ09344)
关键词 诱发电位 α-稳定分布 独立分量分析 分数低阶统计量 Givens矩阵 Evoked potentials(EP) Alpha stable distribution Blind source separation Fractional lower order statistics(FLOS) Givens matrix
  • 相关文献

参考文献12

  • 1GHARIB R R, CICHOCKI A. Noise reduction in brain evoked potentials based on third-order correlations [J]. IEEE Transactions on Biomedical Engineering, 2001, 48 (5) : 501- 512.
  • 2DAVILA C E, SREBRO R, GHALEB I A. Optimal detection of visual evoked potential [J], IEEE Transaction on Biomedical Engineering, 1998, 45(6): 800-803.
  • 3洪波,唐庆玉,杨福生,潘映辐,陈葵,铁艳梅.ICA在视觉诱发电位的少次提取与波形分析中的应用[J].中国生物医学工程学报,2000,19(3):334-341. 被引量:52
  • 4NIKIAS C L, SHAO M. Signal processing with Alpha-stable distributions and applications[M]. New York: John Wiley Sons Inc. , 1995:100-103.
  • 5SHAO M, NIKIAS C L. Signal processing with fractional lower order moments: Stable processes and their applications [C]. Proceedings of IEEE, 1993, 81(7):986-1010.
  • 6邱天爽.统计信号处理-非高斯信号处理及其应用[M].北京:电子工业出版社,2002,127-134.
  • 7HAZARIKA N, TSOI A C, SERGEJEW A A. Nonlinear considerations in EEG signal classifieation[J]. IEEE Trans. Signal Processing, 1997, 45:829-936.
  • 8MA X, NIKIAS C L. Joint estimation of time delay and frequency delay in impulsive noise using fractional lower-order statistics[J]. IEEE Traps. Signal Processing, 1996, 44: 2669-2687.
  • 9KARHUMEN J, OJA E, WANG L. A class of neural networks for independent component analysis[J]. IEEE. Trans. on Neural Network, 1997, 8(3):125-129.
  • 10MUTIHAC R, VAN H. PCA and ICA neural implementations for source separation - a comparative study[C]. Proceedings of the International Joint Conference on Neural Networks,2003, 1:20-24.

共引文献51

同被引文献22

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部