期刊文献+

一种基于系数分类的CBCT图像去噪新方法 被引量:7

A New CBCT Denoising Method Based on Coefficient Classification
原文传递
导出
摘要 去噪是医学图像处理的一个重要研究课题。本文提出一种快速易实现的CBCT去噪新方法:利用二进小波变换将CBCT图像变换到小波域中,根据锥形影响域(COI)内的尺度间小波系数幅值和之间的比值,将小波系数分为两类,用基于方向窗的维纳滤波对不同类别的小波系数做不同的去噪处理,并提出一种更适合CBCT图像的噪声方差估计方法。对测试图像与临床CBCT图像的去噪结果表明,新方法所得去噪结果优于小波阈值去噪结果,能够在保留重要诊断细节的同时,有效地抑制CBCT图像中的噪声,为临床CBCT图像的实时去噪提供了一种新手段。 Denoising is an important issue for medical image processing. In this paper,a fast CBCT denoising method was proposed:CBCT images were transformed into wavelet domain with dyadic wavelet transform. According to the inter-scale relationship of wavelet coefficient magnitude sum in cone of influence (COI),wavelet coefficients were classified into two categories,then different types of coefficient were denoised by different wiener filtering based on direction window at all levels,and a new noise variation estimating method more suitable for CBCT images was proposed. Experimental results of a test image and a clinical CBCT image show that this algorithm is superior to the conventional method for wavelet shrinkage denoising. This algorithm can suppress noise in CBCT images effectively and keep up the important structure details for diagnosis,thus providing a new approach for real-time denoising clinical CBCT images.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2010年第3期658-665,共8页 Journal of Biomedical Engineering
基金 国家自然科学基金项目资助(30870666) 山东省科技攻关项目资助(2007GG20002030)
关键词 CBCT图像去噪 二进小波变换 系数分类 基于方向窗的维纳滤波 CBCT denoising Dyadic wavelet transform Coefficient classification Wiener filtering based on direction window
  • 相关文献

参考文献12

  • 1TU S H J, SHAW C C, CHEN L Y. Noise simulation in cone beam CT imaging with parallel computing [J]. Phys Med Biol, 2006, 51(5): 1283-1297.
  • 2ZHONG J M, NING R, CONOVER D. Image denoising based on multiscale singularity detection for Cone Beam CT Breast Imaging [J]. IEEE Transactions on Medical Imaging, 2004, 23(6) : 696-704.
  • 3NING R. Method and apparatus of global de-noising for cone beam and fan beam CT imaging[P], United States Patent,7362845, 2008.
  • 4SUN Y, HOU Y, HU J S H. Reduction of artifacts induced by misaligned geometry in Cone-Beam CT[J]. IEEE Transactions Biomedical Engineering, 2007, 54(8): 1461-1471.
  • 5HUANG K D, ZHANG D H, JIN Y F. Adaptive filter for serial slice images of Cone-Beam computed tomography[C]. The 2nd International Conference on Bioinformatics and Biomedical Engineering, 2008, 2393-2396.
  • 6MALLAT S, ZHONG S. Characterization of signals from multiscale edges[J]. IEEE Transactions on Pattern Analysis and Medical Intelligence, 1992, 14(7): 710-732.
  • 7MIHCAK M K, KOZINTSEV I, RAMCHANDRAN K, et al. Low-Complexity Image Denoising Based on Statistical Modeling of Wavelet Coeffieients[J]. IEEE Signal Proeessing Letters, 1999, 6(12): 300-303.
  • 8潘泉,戴冠中,张洪才,张磊.基于阈值决策的子波域去噪方法[J].电子学报,1998,26(1):115-117. 被引量:59
  • 9KALIFA J, LAINE A, ESSER P D. Regularization in tomographic reconstruction using thresholding estimators [J]. IEEE Transactions on Medical Imaging, 2003, 22 (3) : 351- 359.
  • 10DONOHO D L, JOHNSTONE I M. Ideal spatial adaptation by wavelet shrinkage [J]. Biometrika, 1994, 81 (3): 425- 455.

二级参考文献8

  • 1Mihcak M K, Kozintsev I, Ramchandran K. Low-complexity image denoising based on statistical modeling of wavelet coefficients[J]. IEEE Signal Processing Letters, 1999, 6(12): 300-303.
  • 2Chang S G, Yu B, Vetterli M. Spatially adaptive wavelet thresholding with context modeling for image denoising[J],IEEE Transactions on Image Processing, 2000, 9 (9):1522-1531.
  • 3Mihcak M K, Kozintsev I, Ramchandran K. Spatially adaptive statistical modeling of wavelet image coefficients and its application to denoising[A]. Acoustics, Speech, and Signal Processing, 1999. Proceedings, 1999 IEEE International Conference[C]. 1999,6, 3253-3256,.
  • 4Romberg J K, Choi H, Baraniuk R. Bayesian tree-structured image modeling using wavelet-domain hidden Markov model[A]. in Proc, SPIE[C]. Denver, CO. 1999,3816.31-44.
  • 5Fan Guo-liang, Xia Xiang-gen. Image denoising using a local contextual hidden markov model in the wavelet domain [J].IEEE Signal Processing Letters , 2001, 8(5 ) : 125-128.
  • 6Fan G, Xia Xiang-gen. Wavelet-based statistical image processing using Hidden Markov Tree model[A], in Proc 34th Annu Conf Information Sciences and Systems[C]. Princeton, NJ,2000.
  • 7Lu J,Opt Eng,1994年,33卷,7期
  • 8Lu J,Proc of IEEE SP intl symp on time-fre-quency and time-scale analysis,1992年

共引文献61

同被引文献118

引证文献7

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部