期刊文献+

利用多层受约束一范数优化检测功能磁共振成像中神经活动

Detection of multi-layer brain neural activities in functional MR images using constrained L1 optimization
下载PDF
导出
摘要 本研究提出利用fMRI中神经信号内在的稀疏性,通过积分器转换,最大期望算法优化对脑fMRI中血流动力学变化建立多层神经信号模型,将检测脑fMRI中神经活动转化为受约束的一范数优化问题。利用空间自适应滤波器,优化结果可以准确地检测出fMRI中神经活动。通过与目前主流检测方法时间聚类分析、最大相关性方法及图模型推理法对比,本文提出的方法能够以较小的计算复杂度得出精确的结果 。 In this paper,a framework was proposed to utilize the sparsity within neural activities. Through integrators and EM approach,a multi-layer neural hymodynamic response model was established. By converting the neural activity detection problem into a finding the sparse solution in constrained L1 optimization problem,using adaptive spatial filtering,brain neural activities in multiple scales can be detected. The proposed method was compared with temporal cluster analysis (TCA),the maximum correlation method (MCM),and graphical model inference (GMI). The experimental results demonstrated the computational efficiency and detection accuracy of the proposed approach.
作者 李川
出处 《中国医学影像技术》 CSCD 北大核心 2010年第7期1354-1357,共4页 Chinese Journal of Medical Imaging Technology
关键词 磁共振成像 一范数优化 多层神经信号模型 血流动力学 Magnetic resonance imaging L1 Optimization Multi-layer signal model neural Hemodynamics
  • 相关文献

参考文献10

  • 1Zhao X,Glahn D,Tan LH,et al.Comparison of TCA and ICA techniques in fMRI data processing.J Magn Reson Imaging,2004,19(4):397-402.
  • 2O'Doherty JP,Hampton A,Kim H.Model-based fMRI and its application to reward-learning and decision making.Ann N Y Acad Sci,2007,1104:35-53.
  • 3Faisan S,Thoraval L,Armspach JP,et al.Unsupervised learning and mapping of active brain functional MRI signals based on hidden semi-Markov event sequence models.IEEE Trans Med Imaging,2005,24(2):263-276.
  • 4Wang Y,Rajapakse JC.Contextual modeling of functional MR images with conditional random field.IEEE Trans Med Imaging,2006,25(6):804-812.
  • 5Penny WD,Trujillo-Barretob NJ,Friston KJ.Bayesian fMRI time series analysis with spatial priors.Neurolmage,2005,24(2):350-362.
  • 6Li C,Hao Q,Guo W,et al.A hybrid approach for compressive neural activity detection with functional MR images.Conf Proc IEEE Eng Med Biol Soc,2009:4787-4790.
  • 7Logothetis NK,Pauls J,Augath M,et al.Neurophysiological investigation of the basis of the fMRI signal.Nature,2001,412(6843):150-157.
  • 8Friman O,Borga M,Lundberg P,et al.Detecting neural activity in fMRI using maximum correlation modeling.Neuroimage,2002,15(2):386-395.
  • 9Donoho D,Tsaig Y.Fast solution of Ll-norm minimization problems when the solution may be sparse.Technical Report Instute for Computational and Math Eng,Stanford University,2006.
  • 10Efron B,Hastie T,Johnstone I,et al.Least angle regression.Ann.Statist,2004,32(2):407-499.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部