期刊文献+

粒子滤波重采样及在盲均衡中的应用 被引量:4

Application of Particle Filter Resampling in Blind Equalization
原文传递
导出
摘要 提出了一种新的粒子滤波重采样算法——降序二分法,这种算法的主要思想是在分层重采样算法的基础上,寻找权重最大点的过程用折半二分法。另外,把这种算法应用于信道的盲均衡中,为了易于采样,重要性函数采用先验概率密度,用信道的均值代替信道的真实值,仿真结果表明,这种算法的平均性能优于之前的重采样算法,且均衡的同时能够完成对信道的辨识。 A novel resampling algorithm named Descending Dichotomy Algorithm is proposed in this paper.Based on the stratified resampling algorithm,Dichotomy Algorithm is used in the searching process of the biggest weight pot.In addition,the Descending Dichotomy Algorithm is applied to the blind equalization,and the importance sampling process could be simplified by choosing the prior density as the importance function.Also,for the same reason,the actual value of the channel is replaced by the average value.The simulation results reveal that the average performance of the Descending Dichotomy Algorithm is superior to that of the other resampling algorithms,and at the same time of equalization,the blind identification could be accomplished.
出处 《通信技术》 2010年第7期25-27,30,共4页 Communications Technology
基金 国家自然科学基金项目(批准号:60871046)
关键词 粒子滤波 重要性重采样 盲均衡 particle filter importance resampling blind equalization
  • 相关文献

参考文献8

  • 1GORDON N J,SECOND D J,SgITH A F M.Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation[J].IEEE Proceeding-F,1993,140 (02):107-111.
  • 2LIU J S,CHEN R.Blind Deconvolution Via Sequential Imputations[J].American Statistical Association.1995,90(430):567-576.
  • 3MIGUEZ J,DJURIC P M.Blind Equalization by Sequential Importance Sampling[C].USA:IEEE,2002:845-848.
  • 4BERTOZZI T,LE Ruyet D,RIGAL G,et al.Joint Data-channel Estimation Using the Particle Filtering on Multipath Fading[C].French:French Polynesia Proceedings of ICT,2003:1284-1289.
  • 5BERTOZZI T,LE Ruyet D,RIGAL G,et al.On Particle Filtering for Digital Communications[M].USA:IEEE,2003.
  • 6PUNSKAYA E,ANDRIEU C,DOHCET A,et al.Particle Filtering for Demodulation in Fading Channels with Non-Gaussian Additive Noise[J].IEEE Transactions on Communication,2001(49):579-582.
  • 7王磊,刘郁林,李正东.粒子滤波理论及其在盲均衡中的应用[J].重庆邮电学院学报(自然科学版),2005,17(6):691-694. 被引量:4
  • 8王磊,刘郁林.基于粒子滤波器的盲辨识和盲均衡新方法[J].通信学报,2006,27(10):132-135. 被引量:6

二级参考文献23

  • 1郑鹏,尤春艳,刘郁林,田莉.基于最大峰度准则和遗传算法的盲辨识与盲均衡[J].重庆邮电学院学报(自然科学版),2004,16(4):64-67. 被引量:4
  • 2PUNSKAYA E,ANDRIEU C,DOUCET A,et al.Particle filtering for demodulation in fading channels with non-Gaussian additive noise[J].IEEE Transactions on Communication,2002,49(4):579-582.
  • 3YANG Zi-gang,WANG X D.A sequential Monte Carlo blind receiver for OFDM systems in frequency-selective fading channels[J]. IEEE Trans. Signal Processing, 2002,50(2):271-280.
  • 4MOULINES Eric.Particle filter[OL].Ecole Natioale Superieure des Telecommunications.http://www.tsi.enst.fr/-moulines/enseignement/particle HMM Partile filter pdf.2005-01-05.
  • 5LIU J,CHEN R.Blind deconvolution via sequential imputations[J].American Statisticla Association, 1995,90(430):567-576.
  • 6MIGUEZ J,DJURIC P M.Blind equalization by sequential importance sampling[A].Proceedings of IEEE ISCAS[C], Phoenix, AZ, 2002.
  • 7BEROZZI T,LE D,RUYET, et al.Joint data-channel estimation using the particle filtering on multipath fading[A].Proceeding of ICT[C].Tahiti Papeete, French Polynesia, 2003.
  • 8BEROZZI T,LE D,RUYET,et al.On particle filtering for digital communications[A].proceeding of IEEE.Workshop on SPAWC[C]. Rome, Italy , 2003 .
  • 9GHIRMAI T,DJURIC P M.Multisample receivers for time-varying channels using particle filtering[A].Proceeding of IEEE.Workshop on SPAWC[C].Rome, Italy , 2003.
  • 10GHIRMAI T,KOTECHA J,DJURIC P M.Joint channel estimation and data detection over frequency-selective fading channels using sequential Monte Carlo filtering[A] .Proceeding of the CISS[C].Princeton, NJ, 2002.

共引文献8

同被引文献29

  • 1朱红,吴成柯,方勇.基于H.264的自适应选择增强FGS视频编码[J].电子学报,2005,33(12):2204-2208. 被引量:3
  • 2龙崇剑,陈恭亮,张爱新.基于遗传算法的密码分析方法[J].信息安全与通信保密,2007,29(3):32-34. 被引量:2
  • 3周弘仁,敬忠良,王培德.机动目标跟踪[M].北京:国防工业出版社,1991.
  • 4BLOM H A P, BAR-SHALOM Y. The Interacting Multiple Model Algorithm for Systems with Markovian Switching Coefficient[J]. IEEE Trans on Automatic Control, 1988, 33(08):780-7836.
  • 5CHENG Chang, RASHID A. Kernel Particle Filter for Visual Tracking[J]. IEEE Signal Processing Letters, 2005, 12(03):242-245.
  • 6BOERS Y, DEIESSEN J N. Interacting Model Particle Filter[J]. IEEE Proc-Radar Sonar Navig., 2003, 150 (05) : 344-349.
  • 7YANG Ning, DING Bin, ZHANG Jianming. Performance Test of Interacting Multiple Model Particle Filter for Maneuvering Target Location[C]. Shanghai: Measuring Technology and Mechatronics Automation, 2011: 850-853.
  • 8章飞,周杏鹏,陈小惠.基于粒子滤波的交互式多模型多机动目标跟踪[J].数据采集于处理,2011,26(02):181-187.
  • 9PARK S, HWANG J, ROU K, et al. A New Particle Filter Inspired by Biological Evolution: Genetic Filter[J]. International Journal of Advanced Robotic Systems (S1729-8806),2007, I(03):183-190.
  • 10QIU B S, LIU H Y, CAI Y O, et al. An Adaptive Parameter Model for Maneuvering Target Tracking[C]// The 4th International Conference on Signal Processing, ICSP' 98. Beijing: IEEE, 1998:564-469.

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部