期刊文献+

IMM概率数据关联算法的多重门限研究 被引量:4

Study on Multi_threshold Based on IMM Probabilistic Data Association Algorithm
原文传递
导出
摘要 合理的跟踪门将大大提高数据关联算法的性能,其重要性不言而喻。在椭圆跟踪门的基础上加入了速度和角度限定,进一步减少了波门中杂波的个数和计算量,提高了关联跟踪的质量。对飞机的俯冲运动进行了仿真,证明了算法的有效性和可行性,同时通过对比分析,得出此算法在密集杂波环境下有着更好的效果。 Properly-set tracking gate could greatly improve the algorithm performance of data association,and it plays an important role in data processing.The limit of velocity and angle is added in the elliptic tracking gate,thus to further reduce the clutters of the gate and calculation load,and improve the quality of the association.The simulation on the dive motion shows that the algorithm is feasible and effective in practice,and the comparison analysis also reveals that this algorithm could perform well in the dense clutters.
出处 《通信技术》 2010年第7期228-229,232,共3页 Communications Technology
关键词 交互式多模型 数据关联 跟踪门 多重门限 interactive multiple models data association tracking gate multi-threshold
  • 相关文献

参考文献4

二级参考文献31

  • 1博战捷.多频调制信号通过失谐电路的数学表示与波形[J].内蒙古师范大学学报(自然科学汉文版),2004,33(4):390-393. 被引量:1
  • 2潘泉,张洪才,王培德,周宏仁.修正概率数据关联算法的研究[J].西北工业大学学报,1993,11(1):24-29. 被引量:4
  • 3潘泉,张洪才,向阳朝,王培德.组合式快速JPDA算法[J].航空学报,1994,15(5):558-563. 被引量:6
  • 4潘泉,向阳朝,张洪才.主导概率数据关联及算法[J].宇航学报,1995,16(3):48-52. 被引量:1
  • 5潘泉.自适应目标跟踪算法研究[M].西安:西北工业大学,1997..
  • 6Haykin S. Adaptive filter theory[M]. Fourth Edition, [s.l.]: Printice Hall, 2002.
  • 7Yip P C, Etter D M. An adaptive Multiple Echo Canceller for Slowly Time-Varing Echo Paths[J]. IEEE Trans on Commun, 1990,38(10): 1693.
  • 8Ye Hua, Wu Bo-Xiu. A New Double-talk Detection Algorithm Based on the Orthogonality Theorem[J]. IEEE Trans on commun, 1991,89(11):1542.
  • 9Cho J H, Morgan D R, Benesty J. An Objective Technique for evaluating Doubletalk detectors in Acoustic Echo Caneeler[J]. IEEE Trans. on speech and audio processing, 1999,7(06):718.
  • 10Benesty J, Morgan D R, Cho J B. A New Class of Doubletalk Detectors Based on Cross-correlation[J]. IEEE Trans. on speech and audio processing , 2000,8(02):168.

共引文献31

同被引文献32

  • 1张晶炜,熊伟,何友.杂波环境中机动目标跟踪算法性能分析[J].火力与指挥控制,2004,29(4):71-74. 被引量:2
  • 2龙崇剑,陈恭亮,张爱新.基于遗传算法的密码分析方法[J].信息安全与通信保密,2007,29(3):32-34. 被引量:2
  • 3李良群,姬红兵,罗军辉.杂波环境下被动多传感器机动目标跟踪新算法[J].电子与信息学报,2007,29(8):1837-1840. 被引量:6
  • 4周弘仁,敬忠良,王培德.机动目标跟踪[M].北京:国防工业出版社,1991.
  • 5BLOM H A P, BAR-SHALOM Y. The Interacting Multiple Model Algorithm for Systems with Markovian Switching Coefficient[J]. IEEE Trans on Automatic Control, 1988, 33(08):780-7836.
  • 6CHENG Chang, RASHID A. Kernel Particle Filter for Visual Tracking[J]. IEEE Signal Processing Letters, 2005, 12(03):242-245.
  • 7BOERS Y, DEIESSEN J N. Interacting Model Particle Filter[J]. IEEE Proc-Radar Sonar Navig., 2003, 150 (05) : 344-349.
  • 8YANG Ning, DING Bin, ZHANG Jianming. Performance Test of Interacting Multiple Model Particle Filter for Maneuvering Target Location[C]. Shanghai: Measuring Technology and Mechatronics Automation, 2011: 850-853.
  • 9章飞,周杏鹏,陈小惠.基于粒子滤波的交互式多模型多机动目标跟踪[J].数据采集于处理,2011,26(02):181-187.
  • 10PARK S, HWANG J, ROU K, et al. A New Particle Filter Inspired by Biological Evolution: Genetic Filter[J]. International Journal of Advanced Robotic Systems (S1729-8806),2007, I(03):183-190.

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部