期刊文献+

低磷供应对拟南芥根系构型的影响 被引量:8

Effect of Low-phosphate Supply on the Root System Architecture in Arabidopsis thaliana
下载PDF
导出
摘要 在人工气候箱中,采用Johnson培养基对拟南芥在低磷供应条件下根系构型的变化进行了研究,结果表明:拟南芥在磷饥饿诱导下,主根缩短,侧根密度、根毛的数量和长度显著增加,并且,根尖到第一侧根和第一根毛的距离也大大缩短。这些改变增加了根系比表面积,并且使得根系分布更加靠近土壤表层,有利于提高植物吸收土壤中有机磷的效率。低磷胁迫还导致拟南芥根系分生组织区细胞形状变异,柱细胞数量减少;主根生长和细胞伸长的动力学分析显示,磷饥饿促使拟南芥主根生长变缓,细胞长度随磷饥饿程度的加深迅速缩小。CycB1;1:GUS染色分析结果表明,低磷破坏拟南芥根系分生组织细胞分裂能力,这些结果说明磷胁迫同时抑制了细胞的伸长和分裂,从而引起拟南芥主根的缩短。 Using Johnson medium,under climatic chamber condition,we detected the change of root architecture under Pi starvation in Arabidopsis. Results showed that the P deficiency inhibited primary root growth,enhanced lateral root concentration and stimulated root hair elongation and root hair proliferation. Moreover,P-starvation decreases the distance from root tip to first lateral root primordium and to first root hair. These changes increased the root specific surface area and distributed the root system closer to soil surface,therefore enhanced the absorption ability of root. P starvation also induced the cell distortion,arrested columella cells development. The kinetic assays on cell length and primary root growth showed a reduction in the primary root elongation and in the cell length when compared with high P-grown plants. CycB1;1:GUS staining suggested that P-starvation destroyed cell division in root meristem. Therefore,the reduced primary root growth was due to the reduced cell elongation and cell division.
作者 王学敏
出处 《植物研究》 CAS CSCD 北大核心 2010年第4期496-502,共7页 Bulletin of Botanical Research
基金 973项目(2005CB120900) 十一五科技支撑(2008BADB3B01)
关键词 拟南芥 低磷 生理机制 根系构型 Arabidopsis thaliana low-phosphate supply physiological mechanism root system architecture
  • 相关文献

参考文献26

  • 1Poirier Y, Bucher M. Phosphate transport and homeostasis in Arabidopsis [ M ]. American Society of Plant Biologists, 2002.
  • 2Holford I C R. Soil phosphorus: its measurements and its uptake by plants[ J ]. Aust J Soil Res, 1997,35:227 - 239.
  • 3Sehaehtman D P, Reid R J, Ayling S L. Phosphorus uptake by plants : from soil to cells [ J ]. Plant Physiol, 1998, 116 : 447 - 453.
  • 4Duff S M G, Moorhead G B G, Lefebvre D D, et al. Phosphate starvation inducible " bypasses" of adenylate and phosphate dependent glycolytic enzymes in Brassica nigra suspension cells [ J ]. Plant Physiol, 1989,90 : 1275 - 1278.
  • 5Lynch J P. Root architecture and plant productivity [ J ]. Plant Physiol, 1995,109:7 - 13.
  • 6Al-Ghazi Y, Muller B, Pinloche S, et al. Temporal response of Arabidopsis root architecture to phosphate starvation:evidence for the involvement of auxin signalling [ J ]. Plant Cell Environ ,2003,26 : 1053 - 1066.
  • 7Bonser A M, Lynch J, Snapp S. Effect of phosphorus deficiency on growth angle of basal roots in Phaseolus vulgaris [ J ]. New Phytol, 1996,132:281 - 288.
  • 8Carswell C, Grant B R ,Theodorou M E, et al. The fungicide phosphonate disrupts the phosphate-starvation response in Brassica nigra seedlings [ J ]. Plant Physiol, 1996,110 : 105 -110.
  • 9Drew M C. Comparison of the effect of a localized supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root system, and the shoot, in barley [ J ]. New Phytol, 1975,75:479 - 490.
  • 10Johnson J F, Allan D L, Vance C P. Phosphorus stress-induced proteoid roots show altered metabolism in Lupinus albus [ J ]. Plant Physiol, 1994,104: 657 - 665.

同被引文献226

引证文献8

二级引证文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部