期刊文献+

位于“V”型峡谷桥址的连续刚构桥风冲击模型与抗风设计

Wind Impacting Model and Wind-Resistant Design of Continuous Rigid-Frame Bridge at V-Shape Valley
下载PDF
导出
摘要 风荷载作用效应的精确分析是对"V"型峡谷桥址处平衡悬臂工法施工的高墩大跨连续刚构桥的结构安全性的重要保证。以1座最高主墩153 m,跨径组合85 m+4×160 m+85 m的连续刚构桥为例,依据其桥址处的风环境确定了上、下部结构的风冲击模型,并在最大悬臂工况下与静风荷载进行对比分析后对桥的抗风构造进行了优化。结果表明:高墩的位移与应力,构造的动风载模型效应比静力风载的大3倍以上;增加的风撑横系梁构造可最大减小墩顶的应力与位移的73.9%;墩顶在最大悬臂阶段出现侧向最大位移11.9 cm,桥墩墩底截面拉应力1.65 MPa,虽未超过容许值,但应考虑采取适当的抗风措施。 Long-span and high-pier continuous rigid-frame bridges constructed by balanced cantilever method at V-shape valley,detailed analysis on response of wind impacting is the key to ensure structural safety during constructional stage.A dynamic wind loading model is built for a continuous rigid-frame bridge with the highest pier up to 153 m and the combination of span is 85 m+4×160 m+85 m,with different superstructure and substructure in accordance with wind environment.Comparative analysis is made between static wind loading model and dynamic one in the key constructional stage-maximum cantilever stage and optimized wind-resistant structure is designed.The result shows that the displacement and stress of dynamic wind loading model for super high-pier are three times larger than that of static one.The straining beam of wind bracing may reduce the displacement of super high-pier top under wind loading evidently up to 73.9%.The lateral displacement at the top of the pier is 11.9 cm and the stress is 1.65 MPa at the bottom in the largest cantilever stage.Within permitted ones,however appropriate wind resistant ways may be adopted.
出处 《桂林理工大学学报》 CAS 北大核心 2010年第2期229-232,共4页 Journal of Guilin University of Technology
基金 陕西省重点学科建设专项资金项目(E01004) 西安科技大学校青年科技基金项目(QN0909)
关键词 连续刚构桥 悬臂施工 风冲击模型 风撑横系梁 continuous rigid-frame bridge cantilever erection wind impacting model straining beam of wind bracing
  • 相关文献

参考文献5

二级参考文献13

  • 1[1]Giovanni Solari. Mathemtical model to predict 3-D wind loading on buildings [J]. Journal of Engineering Mechanics, 1985,111 (2) :254-275.
  • 2[2]Vickery B J and Clark A W. Lifi or across-wind response of tapered stacks [J]. Joumal of the Structural Division, ASCE,1972,Vol. 98, No. ST1:1-20.
  • 3[3]Kanda J and Choi H. Proposed formulae for the power spectral densities of fluctuating lift and torque on rectangular 3-D cylinders [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 46-47:507-516 .
  • 4[4]Erdal Safak Douglas A. Fnutch. Coupled vibrations of rectangular building subjected to normality - incident random wind loads [J]. Journal of Wind Enginering and Industrial Aerodynamics, 1987,26: 129-148.
  • 5王有志 薛云冱 张启海 等.预应力混凝土结构[M].北京:中国水利水电出版社,1998..
  • 6JTG/TD60-01-2004.公路桥梁抗风设计规范[S].[S].,..
  • 7Collins M P, Mitchell D. “Statically Indeterminate Structures”. Prestressed Concrete Structures [ M ]. Prentice Hall. Inc. Englewood Cliffs. N. J. 1991:476 -522.
  • 8Picard A. Relative Efficiency of External Prestressing[J]. Journal of structural engineering, 1995 (2) : 105 - 109.
  • 9同济大学土木工程防灾国家重点实验室.杭州下沙大桥抗风试验研究[R].上海:同济大学,2000.
  • 10陈艾荣,项海帆.悬臂施工中的刚构桥梁的风荷载计算方法[J].公路,1998,43(3):7-10. 被引量:16

共引文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部