期刊文献+

改进遗传神经网络在甘蔗产量预测中的应用 被引量:7

The Application on the Sugar Cane Forecast with the Neural Networks Using Improved Genetic Algorithms
下载PDF
导出
摘要 传统甘蔗产量预测方法对外界多因素关联作用的农作物产量预测的难度大、精度差、准确度低,本文提出改进自适应交叉和变异算子的遗传BP算法,多元逐步回归简化BP网络的输入变量,应用改进的遗传BP算法策略,并以甘蔗产量实例数据进行了验证和分析,结果表明,改进的遗传BP算法总体效果最优. The features of traditional method on sugar cane production forecast were discussed, and an improved intelligence genetic algorthms (GA) strategy and a method of simplified input variables by the multiple stepwise regression are presented, which can avoid the shortage of trained BP and enhance the BP model learning efficiency on the sugarcane data. An improved GABP model was simulated and verified in the forecast example of sugarcane data.
出处 《华南农业大学学报》 CAS CSCD 北大核心 2010年第3期102-104,共3页 Journal of South China Agricultural University
关键词 改进遗传算法 BP网络 甘蔗 预测 improved genetic algorithm BP network sugar cane forecast
  • 相关文献

参考文献6

二级参考文献27

共引文献273

同被引文献75

引证文献7

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部