期刊文献+

基于局部主成分分析的协同过滤推荐模型 被引量:5

Collaborative Filtering Recommendation Model Based on Local Principle Component Analysis
下载PDF
导出
摘要 根据传统协同过滤算法中用户数据的高维稀疏特点,提出一种基于局部主成分分析协同过滤推荐模型,采用基于语义分类和主成分分析的二阶段降维技术,分别对各类主题页面进行局部降维处理,以保留对某类主题真正感兴趣的用户群,加速最近邻的搜索过程。通过对真实Web日志数据的测试,证明该模型具有较高的预测精度。 According to the high dimensionality and sparsity of rating matrix in traditional collaborative filtering recommendation system,a new collaborative filtering recommendation model based on Local Principle Component Analysis(LPCA) is proposed which combines taxonomy technique and local principle component analysis method to make dimension reduction for different subject genre respectively,and remains the real interested users in one specific subject of the Web pages which accelerates the neighbor searching process.Experiment on real log data indicates the new model can improve the predication quality.
作者 郁雪 李敏强
出处 《计算机工程》 CAS CSCD 北大核心 2010年第14期37-39,共3页 Computer Engineering
基金 高等学校博士学科点专项科研基金资助项目(20020056047)
关键词 推荐系统 协同过滤算法 维数约简 局部主成分分析 recommendation system collaborative filtering algorithm dimensionality reduction Local Principle Component Analysis(LPCA)
  • 相关文献

参考文献8

  • 1Sebastiani F.Machine Learning in Automated Text Categorization[J].ACM Computing Survey,2002,34(1):1-47.
  • 2Sarwar B M,Karypis G,Konstan J,et al.Application of Dimensionality Reduction in Recommender System:A Case Study[C] //Proc.of ACM Workshop on Web Mining for E-commerce Challenges and Opportunities.Boston,USA:[s.n.] ,2000.
  • 3Goldberg K,Roeder T,Gupta D,et al.Eigentaste:A Constant Time Collaborative Filtering Algorithm[J].Information Retrieval,2001,4(2):133-151.
  • 4邓爱林,左子叶,朱扬勇.基于项目聚类的协同过滤推荐算法[J].小型微型计算机系统,2004,25(9):1665-1670. 被引量:147
  • 5Gao Fengrong,Xing Chunxiao,Zhao Yong.An Effective Algorithm for Dimensional Reduction in Collaborative Filtering[C] //Proc.of the 10th International Conference on Asian Digital Libraries.Berlin,Germany:[s.n.] ,2007.
  • 6余力,刘鲁,李雪峰.用户多兴趣下的个性化推荐算法研究[J].计算机集成制造系统,2004,10(12):1610-1615. 被引量:45
  • 7Chakrabarti K,Mehrotra S.Local Dimensionality Reduction:A New Approach to Indexing High Dimensional Space[C] //Proc.of IEEE VLDB'00.[S.l.] :IEEE Press,2000.
  • 8Breese J S,Heckerman D,Kadie C.Empirical Analysis of Predictive Algorithms for Collaborative Filtering[C] //Proc.of the 14th Int'l Conference on Uncertainty in Artificial Intelligence.Madison,Wisconsin,USA:[s.n.] ,1998.

二级参考文献32

  • 1余力,刘鲁,罗掌华.我国电子商务推荐策略的比较分析[J].系统工程理论与实践,2004,24(8):96-101. 被引量:45
  • 2余力,刘鲁.电子商务个性化推荐研究[J].计算机集成制造系统,2004,10(10):1306-1313. 被引量:104
  • 3Schafer J B, Konstan J A and Riedl J. Recommender systems in E-Commerce[C]. In: ACM Conference on Electronic Commerce(EC99), 1999, 158-166.
  • 4Breese J, Hecherman D and Kadie C. Empirical analysis of predictive algorithms for collaborative filtering[C]. In:Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence(UAI-98), 1998, 43-52.
  • 5Schafer J B, Konstan J A and Riedl J. E-Commerce recommendation applications [J]. Data Mining and Knowledge Discovery,2001, 5 (1-2): 115-153.
  • 6Goldberg D, Nichols D, Oki B M and Terry D. Using collaborative filtering to weave an information tapestry[J]. Communications of the ACM, 1992,35(12):61-70.
  • 7Resnick P, Iacovou N, Suchak M, Bergstrom P and Riedl J.Grouplens. an open architecture for collaborative filtering of netnews[C]. In: Proceedings of ACM CSCW' 94 Conference on Computer-Supported Cooperative Work, 1994,175-186.
  • 8Shardanand U and Maes P. Social information filtering: algorithms for automating ''Word of Mouth'' [C]. In Proceedings of ACM CHI' 95 Conference on Human Factors in Computing Systems, 1995, 210-217.
  • 9Hill W, Stead L, Rosenstein M and Furnas G. Recommending and evaluating choices in a virtual community of Use[C]. In:Proceedings of CHI' 95, 1995,194-201.
  • 10Sarwar B, Karypis G, Konstan J and Riedl J. Item-based collaborative filtering recommendation algorithms[C]. In:Proceedings of the Tenth International World Wide Web Conference, 2001,285-295.

共引文献187

同被引文献41

  • 1李英壮,高拓,李先毅.基于云计算的视频推荐系统的设计[J].通信学报,2013,34(S2):138-140. 被引量:8
  • 2丁欣,马严,吴军.适用于校园网的视频推荐系统的设计与实现[J].通信学报,2013,34(S2):175-179. 被引量:4
  • 3邓爱林,左子叶,朱扬勇.基于项目聚类的协同过滤推荐算法[J].小型微型计算机系统,2004,25(9):1665-1670. 被引量:147
  • 4张海燕,丁峰,姜丽红.基于模糊聚类的协同过滤推荐方法[J].计算机仿真,2005,22(8):144-147. 被引量:25
  • 5Sarwar B M. Sparsity, Scalability, and Distribution in Recommender Systems[D]. Minneapolis, USA: University of Minnesota, 2001.
  • 6Sarwar B M, Karypis G, Konstan J, et al. Recommender Systems for Large-scale E-commerce: Scalable Neighborhood Formation Using Clustering[C]. In: Proceedings of the 5th International Conference on Computer and Information Technology. 2002.
  • 7Rashid A M, Lam S K, Karypis G, et al. ClustKNN: A Highly Scalable Hybrid Model-&Memory-based CF Algorithm[C]. In: Proceedings of the KDD Workshop on Web Mining and Web Usage Analysis, at 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2006.
  • 8Rennie J D M, Srebro N. Fast Maximum Margin Matrix Factorization for Collaborative Prediction[C]. In: Proceedings of the 22nd International Conference on Machine Learning. New York: ACM Press, 2005: 713-719.
  • 9Goldberg K, Roeder T, Gupta D, et al. Eigentaste: A Constant Time Collaborative Filtering Algorithm[J]. Information Retrieval, 2001, 4(2):133-151.
  • 10Kim D, Yum B J. Collaborative Filtering Based on Iterative Principal Component Analysis[J]. Expert Systems with Applications, 2005, 28(4): 823-830.

引证文献5

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部