期刊文献+

隐式API调用行为的静态检测方法 被引量:6

Static Detection Method for Obfuscated API-calling Behavior
下载PDF
导出
摘要 为有效提取恶意程序及其变种中的隐式API调用行为,提出一种基于静态分析的隐式API调用行为检测方法。采用指令模板匹配的方法识别具体调用形式,通过分析调用目标地址与函数名之间的关系来识别被调用API函数。实验结果表明,该方法能提高静态分析工具对恶意代码及其变体的检测能力。 To extract API-calling behaviors from malware and their variants effectively,this paper proposes an approach to statically detect the obfuscated API-calling behaviors in Windows platform.In this approach,instruction pattern matching is used to recognize the special calling manner.The relationship between the targets of call instructions and the name strings of API functions is analyzed to identify which API function is called actually.Experimental results show that using this approach can improve detection ability of static analysis tools through static analysis.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第14期108-110,共3页 Computer Engineering
基金 国家"863"计划基金资助项目(2006AA01Z408 2009AA01Z434) 河南省重大科技攻关基金资助项目(092101210500 092101210501)
关键词 恶意代码 静态分析 隐式API调用 模板匹配 malware static analysis obfuscated API-calling pattern match
  • 相关文献

参考文献4

  • 1Forrest S,Hofmeyr S A,Somayaji A.A Sense of Self for Unix Processes[C] //Proc.of 1996 IEEE Symposium on Security and Privacy.Washington D.C,USA:IEEE Computer Society,1996:120-128.
  • 2Rozinov K.Efficient Static Analysis of Executables for Detecting Malicious Behaviors[D].Brooklyn,NY,USA:Polytechnic University,2005.
  • 3Zhang Boyun,Yin Jianping,Hao Jingbo,et al.Using Support Vector Machine to Detect Unknown Computer Viruses[J].International Journal of Computational Intelligence Research,2006,2(1):100-104.
  • 4Zhang Qinghua,Reeves D S.MetaAware:Identifying Metamorphic Malware[C] //Proc.of ACSAC'07.Miami Beach,Florida,USA:[s.n.] ,2007:411-420.

同被引文献43

  • 1钱德俊,张哲,胡晨.NMEA0183协议解析[J].电子器件,2007,30(2):698-701. 被引量:45
  • 2陈波.软件供应链的文献综述[J].科协论坛(下半月),2008(10):75-75. 被引量:1
  • 3朱若磊.利用核心态钩挂技术防止代码注入攻击[J].计算机应用,2006,26(9):2134-2136. 被引量:8
  • 4骆力明,符宇同,鲁悦.利用Hook技术实现进程控制[J].微计算机信息,2007,23(05X):240-242. 被引量:9
  • 5信息系统安全等级保护基本要求,GB/T22239-2008[S].北京:中国标准出版社,2008.
  • 6Moller A, Schwartzbach M I. Static program analysis [D]. Department oi" Computer Science Aarhus University, Denmark, 2012.
  • 7Griffin K, Schneider S, Hu X, et al. Automatic Generation of String Signatures for Malware Detection [C]// Proceedings of the 12th Symposium on Recent Advances in Intrusion Detection. Saint-Malo, France: Springer, 2009, 5758: 101-120.
  • 8莫樱.基于病毒行为分析的特征码的提取与检测[D].硕士学位论文,成都:电子科技大学,2011.
  • 9Christodorescu M, Jha S, Seshia S A, et al. Semantics-aware malware detection[C]// Proceedings of the 2005 IEEE Symposium on Security and Privacy. Oakland, USA: IEEE Computer Society, 2005: 32-46.
  • 10Kolbitsch C, Milani P, Kruegel C, et al. Effective and efficient malware detection at the end host [C]// Proceedings of the 18th USENIX Security Symposium. Montreal, Canada: USENIX Association, 2009: 351-366.

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部