期刊文献+

基于集成学习的规范化LDA人脸识别 被引量:6

Regularized Linear Discriminant Analysis for Face Recognition Based on Ensemble Learning
下载PDF
导出
摘要 针对人脸识别问题中经常面临的"小样本"问题,在规范化的LDA算法的基础上加以改进,并结合集成学习的方法,利用Adaboost算法,在每一次的迭代过程中引进一个加权函数对难以分离的样本增加权重。增加分类器之间的差异度,从而提高样本在新的特征空间中的可分离性,将识别率提高至98.5%。通过ORL数据库的大量实验表明,该算法比传统算法有更好的性能。 For dealing with the "Small Sample Size(SSS)" problem in face recognition tasks,regularized Linear Discriminant Analysis(LDA) based on ensemble learning is proposed.By using Adaboost method,weighting function is introduced into the samples,which is closer in the output space in each iteration.So that the separability between these classes is enhanced in the new feature subspace,and the recognition rate is also improved to 98.5%.Experimental results on facial database of ORL show that this method achieves better performance than traditional methods do.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第14期144-146,共3页 Computer Engineering
基金 国家"973"计划基金资助项目(2004CB318108 2007BC311003) 国家自然科学基金资助项目(60675031) 安徽大学"211"工程学术创新团队基金资助项目(2009SQRZ020ZD)
关键词 人脸识别 规范化线性鉴别分析 集成学习 face recognition regularized Linear Discriminant Analysis(LDA) ensemble learning
  • 相关文献

参考文献5

  • 1Marcialis G L,Roli F.Fusion of LDA and PCA for Face Verification[C] //Proc.of the Workshop on Biometric Authentication.[S.l.] :Springer,2002:30-39.
  • 2郭志波,刘华军,郑宇杰,杨静宇.基于PCA和LDA统一化原理的增强型线性鉴别分析准则[J].中国图象图形学报,2008,13(4):702-708. 被引量:3
  • 3Yu Hua,Yang Jie.A Direct LDA Algorithm for High-dimensional Data with Application to Face Recognition[J].Pattern Recognition,2001,34(10):2067-2070.
  • 4Lu Juwei,Plataniotis K N,Venetsanopoulos A N.Regularization Studies of Linear Discriminant Analysis in Small Sample Size Scenarios with Application to Face Recognition[J].Pattern Recognition Letter,2005,26(2):181-191.
  • 5王琳,冯正进,刘成良,崔光亮.集成多分类器的人脸识别[J].计算机工程,2004,30(17):3-4. 被引量:1

二级参考文献13

  • 1Belhumeur P N, Hespanha J P, Kricgman D J. Eigenfaces vs.Fisherfaces: Recognition Using Class Specific Linear Projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997,19(7):711-720
  • 2Heiselc B, Verri A, Poggio T. Learning and Vision Machines. Proceedings of the IEEE, Visual Perception: Technology and Tools, 2002,90(7): 1164-1177
  • 3Schapire R E, Singer Y. Improved Boosting Algorithms Using Confidence-rated predictions. Machine Learning. 1999,37(3):297-336
  • 4Viola P, Jones M. Fast and Robust Classification Using Asymmetric AdaBoost and a Detector Cascade. Neural Information Processing Systems, 2001
  • 5Zhao W, Chelllappa R, Rosenfeld A ,et al. Face recognition:A literature survey [ J]. Acm Computing Surveys (CSUR) ,2003,35 (4) : 399 - 458.
  • 6Kirby M, Sirovich L. Application of the KL procedure for the characterization of human faces[ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990,12( 1 ) : 103 - 108.
  • 7Turk M,Pentland A. Eigenfaces for recognition [ J ]. Journal of Cognitire Neuroscience, 1991,3 ( 1 ) :71 - 86.
  • 8Belhumeur P N, Hespanha J P, Kriengman D J. Eigenfaces vs. fisherfaces: recognition using class special linear projection [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7) :711 - 720.
  • 9Swets D L, Weng J. Using discriminant eigenfeatures for image retrieval[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996,18 ( 8 ) :831 - 836.
  • 10Chen L F, Liao H Y M, Lin J C,et al. A new LDA-based face recognition system which can solve the small sample size problem [ J]. Pattern Recognition,2000,33(10) : 1713 - 1726.

共引文献2

同被引文献47

  • 1Belkin M, Niyogi P. Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering[C]//Proc. of Conf. on Advances in Neural Information Processing Systems. Vancouver, Canada: [s. n.], 2003: 1373-1396.
  • 2He Xiaofei, Niyogi P. Locality Ppreserving Projections[C]// Proc. of Conf. on Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2004: 153-160.
  • 3Lee Jong Min. Generalized Orthogonal Locality Preserving Projections for Nonlinear Fault Detection and Diagnosis[J]. Chemometrics and Intelligent Laboratory System, 2009, 96(1): 75-83.
  • 4Bartlett M S, Movellan J R, Sejnowski T J. Face Recognition by Independent Component Analysis[J]. IEEE Trans. on Neural Networks, 2002, 13(6): 1450-1464.
  • 5He Xiaofei, Yan Shuicheng, Hu Yuxiao, et al. Face Recognition Using Laplacianfaces[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340.
  • 6Friedman J. Regularized Discriminant Analysis[J]. Journal of the American Statistical Association, 1989, 84(405): 165-175.
  • 7Yang M H. Kernel Eigenfaces vs. Kernel Fisherfaces: Face Recog- nition Using Kernel Methods[C]//Proc. of the 5th IEEE Interna-tional Conference on Automatic Face and Gesture Recognition. Washington D. C., USA: IEEE Computer Society, 2002.
  • 8Li Ming, Yuan Baozong. 2D-LDA: A Statistical Linear Discri- minant Analysis for Image Matrix[J]. Pattern Recognition Letters,2005, 26(5): 527-532.
  • 9Cai Deng, He Xiaofei, Zhou Kun. Locality Sensitive DiscriminantAnalysis[C]//Proc. of the 20th International Joint Conference onArtificial Intelligence. Hyderabad, India: [s. n.], 2007.
  • 10Hastie T, Buja A, Tibshirani R. Penalized Discriminant Analysis[J]. Annals of Statistics, 1995, 23(1): 73-102.

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部