期刊文献+

结合人眼亮度调制传递函数的形态学锐化算法

Morphology Sharpening Algorithm Combining Modulated Transfer Function of Human Eye Luminance
下载PDF
导出
摘要 针对常规彩色图像锐化方法存在的局限性,提出一种空间域锐化算法,其中包括数学形态学运算,利用高斯滤波器分离图像的低频成分和高频成分,强化图像高频成分,调整图像低频成分,将两者合成为新的输出图像。由于形态学开运算和闭运算分别具有自适应极大值滤波和极小值滤波的特点,因此将开闭组合运算用于图像高频成分,自适应地突出图像局部细节,再根据人眼亮度调制传递函数模型,对图像的低频成分进行全局调整,从而进一步改善图像的整体视觉效果。结果证明,该方法在RGB彩色空间和色调/亮度/饱和度感知彩色空间内的锐化效果都好于常规锐化方法。 Aiming at limitation of classical methods of color image sharpening,a kind of novel spatial sharpening algorithm is proposed,which includes mathematical morphology.Gaussian filter is used to separate low frequency and high frequency components of image.High frequency component is intensified,low frequency component is modulated,and the two components are composed into new output image.Morphology open and close operations are composed to apply to high frequency component of image because the two operations have separately adaptive maximum and minimum filtering feature,consequently local detail of image is automatically highlighted.Then modulated transfer function model of human eye is adopted to low frequency of image,and whole visual appearance of image is further improved.Experimental results show that the method is better than classical image sharpening algorithms in RGB color space and hue/illuminant/saturation perceptional color space.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第14期179-181,共3页 Computer Engineering
关键词 形态学 视觉特性 空间锐化 彩色空间 调制传递函数 morphology visual characteristic spatial sharpening color space modulated transfer function
  • 相关文献

参考文献6

  • 1Gonzalez R C,Woods R E.数字图像处理[M].阮秋琦,阮宇智,译.2版.北京:电子工业出版社,2003.
  • 2刘劲,康志伟,何怡刚.基于小波变换的反锐化掩模图像增强新算法[J].计算机工程,2007,33(21):179-180. 被引量:4
  • 3牛和明,曾明,张建勋.基于小波信息量分段调整的图像增强[J].计算机工程,2008,34(6):199-201. 被引量:5
  • 4Baldrich R,Vanrell M,Benavente R.Color Image Enhancement Based on Perceptual Sharpening[C] //Proc.of ICIP'03.Barcelona,Bellaterra,Spain:[s.n.] ,2003.
  • 5Millán M S,Valencia E.Laplacian Filter Based on Color Difference for Image Enhancement[C] //Proc.of SPIE'04.Bellingham,USA:[s.n.] ,2004.
  • 6Levine M D.Vision in Man and Machine[M].New York,USA:McGraw-Hill,1985.

二级参考文献14

  • 1周旋,周树道,黄峰,周小滔.基于小波变换的图像增强新算法[J].计算机应用,2005,25(3):606-608. 被引量:34
  • 2陈武凡.小波分析及其在图像处理中的应用[M].北京:科学出版社,2003.
  • 3MALLAT S.信号处理的小波引导[M].北京:机械工业出版社,2002.
  • 4Gonzalez R C,Woods R E.Digital Image Processing[M].2nd ed.Englewood Cliffs,NJ:Prentice Hall,2002.
  • 5Brown T J.An Adaptive Strategy for Wavelet Based Image Enhancement[C]//Proceedings of Irish Machine Vision and Image Processing Conference,Belfast Northern Ireland.2000.
  • 6Nakashizuka M,Aoki K.Nitta T.A Simple Edge-weighted Image Enhancement Filter Using Wavelet Scale Products[EB/OL].(2005-8-10).http://ieeexplore.ieee.org/search/freesrcha bstract.jsp? arnumber=1353983&isnumber=29746&punumber= 9366 &k2dockey =1353983@ieeecnfs&query=%28+a+simple+edge-weiht ed+image+ enhancement+filter+using+wavelet+scale+products%29+%3Cin%3E+freesrch&pos=0.
  • 7Gonzalez R C, Woods R E. Digital Image Processing[M]. 2nd ed. New Jersey: Prentice Hall, 2002.
  • 8Cho Hwa-Hyun, Kim Seong-Ho, Cho Tae-Kyung, et al. Efficient Image Enhancement Technique by Decimation Method[J]. IEEE Trans. on Consumer Electronics, 2005, 51 (2): 654.
  • 9Nieuwenhuis C, Yan M. Knowledge Based Image Enhancement Using Neural Networks[C]//Proc. of ICPR'06. Hong Kong, China: [s. n.], 2006.
  • 10Shapiro L G Stockman G C. Computer Vision[M]. New Jersey: Prentice-Hall, 2001.

共引文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部