期刊文献+

不同Zernike多项式求取环孔径波面像差的研究 被引量:6

Aberration analysis for annular pupils by different Zernike polynomials
下载PDF
导出
摘要 由于Zernike环多项式各项在环域上正交,以此为基准可以得到Zernike圆多项式拟合环孔径波面求解Seidel像差系数的误差。为了对Zernike圆多项式与环多项式求解的Seidel系数进行准确的比较,根据波像差理论推导并建立对比实验模型,进行量化比较。比较对于具有较大遮拦比的环孔径波面采用Zernike环多项式拟合与采用Zernike圆多项式拟合求取Seidel系数的差别。实验结果表明,采用Zernike圆多项式进行拟合求取Seidel系数时,主要的相对误差存在于离焦、球差和慧差。9项Zernike圆多项式拟合求取的Seidel系数比36项Zernike圆多项式更接近Zernike环多项式求取的系数。同时,如果参与拟合的项数继续减少,求取的Seidel误差反而增大。 Due to the orthogonality of every Zernike annular polynomial in the annular field,the error in Seidel coefficients solved by wave front fitting with circular polynomial for annular pupils could be obtained.To accurately compare Seidel coefficients solved by circular polynomial with Zernike annular polynomial,an experiment model was built according to the theory of wave front aberration.The Seidel coefficients solved by wave front fitting for large obscuration pupils with Zernike annular polynomial and Zernike circular polynomial were compared.The result showed that the main relative errors remained in defocus,sphere and coma aberrations,when the Seidel coefficients were solved by Zernike circular polynomials.The Seidel coefficients solved by the 9 circular polynomial terms are more close to the results solved by the annular polynomial rather than the 36 circular polynomial terms.However,when the number of circular polynomial terms decreases to fewer than 9,the error in Seidel coefficients obtained by circular polynomial will increase.
出处 《应用光学》 CAS CSCD 北大核心 2010年第4期544-548,共5页 Journal of Applied Optics
关键词 ZERNIKE多项式 Seidel系数 最小二乘法 中心遮拦 Zernike polynomials Seidel coefficient least square method central obscuration
  • 相关文献

参考文献9

  • 1侯溪,伍凡,杨力,吴时彬,陈强.中心遮拦干涉图的圆泽尼克拟合对计算赛德尔像差的影响分析[J].光学学报,2006,26(1):54-60. 被引量:11
  • 2VIRENDRA N, MAHAJAN. Zernike annular polynomials for imaging systems with annular pupils[J]. J. Opt. Soc. Am. , 1981,71 (1) : 75-85.
  • 3TATIAN B. Aberration balancing in rotationally symmetric lenses [J]. Opt. Soc. Am.,1974,64(8): 1083-1091.
  • 4VIRENDRA N, MAHAJAN. Zernike annular polynomials and optical aberrations of systems with annular pupils [J ]. Supplement to Optics & Photonics News, 1994,5 (11) : 8125-8132.
  • 5GUANG Ming-dai, VIRENDRA N. Mahajan. Zernike annular polynomials and atmospheric turbulence[J]. J. Opt. Soc. Am. A, 2007,24(1):139- 155.
  • 6亓波,陈洪斌,刘顺发.Zernike多项式波面拟合的回归分析方法[J].光学精密工程,2007,15(3):396-400. 被引量:20
  • 7刘克,李艳秋,刘景峰.带有分割遮拦环形干涉图的波面拟合[J].红外与激光工程,2008,37(S2):778-784. 被引量:7
  • 8DANIEL M. Optical shop testing[M]. 3rd ed. New Jersey..John Wiley & Sons, Inc. , 2007 : 525-539.
  • 9JAMES C. WYANT,KATHERINE C. Basic wavefront aberration theory for optical metrology, applied optics and optical engineering: XI [M]. USA : Academic Press ,Inc. , 1992.

二级参考文献27

  • 1侯溪,伍凡,杨力,吴时彬,陈强.环形子孔径拼接检测大口径非球面镜的规划模型及分析[J].光学精密工程,2006,14(2):207-212. 被引量:14
  • 2曹正林,廖文和,沈建新.Zernike多项式拟合人眼波前像差的一种新算法[J].光学精密工程,2006,14(2):308-314. 被引量:29
  • 3侯溪,伍凡,杨力,陈强.基于Zernike环多项式的环孔径波面拟合方法[J].红外与激光工程,2006,35(5):523-526. 被引量:18
  • 4The CODE V optical design program is developed by Optical Research Associates, www. opticalres, com.
  • 5J. Herrmann. Cross coupling and aliasing in modal wave-front estimation[J]. J. Opt. Soc. Am., 1981, 71(8): 989-992.
  • 6B. Tatian. Aberration balancing in rotationally symmetric lenses[J]. J. Opt. Soc. Am., 1974, 64(8): 1083-1091.
  • 7V. N. Mahanjan. Zernike annular polynomials for imaging systems with annular pupils[J]. J. Opt. Soc. Am., 1981,71(1): 75-85.
  • 8Richard Barakat. Optimum balance wave-front aberrations for radially symmetric amplitude distributions: generalizations of Zernike polynomials[J]. J. Opt. Soc. Am., 1980, 70(6):739-742.
  • 9R. G. Lyon, J. E. Dorband, J. M. Hollis. Hubble space telescope faint object camera calculated point-spread functions[J]. Appl. Opt., 1997, 36(8): 1752-1765.
  • 10S. R. Restaino, S. W. Teare, M. Divittorio et al.. Analysis of the naval observatory flagstaff station 1-m telescope using annular Zernike polynomials[J]. Opt. Engng., 2003, 42(9): 2491-2495.

共引文献33

同被引文献42

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部