期刊文献+

一类随机延迟微分代数系统的Euler-Maruyama方法 被引量:1

Euler-Maruyama Methods for a Class of Stochastic Differential Algebraic System with Delay
原文传递
导出
摘要 我们主要构造了数值求解一类1指标随机延迟微分代数系统的Euler-Maruyama方法,并且证明用该方法求解此类问题可达到1/2阶均方收敛.最后的数值试验验证了方法的有效性及所获结论的正确性. In this paper,the Euler-Maruyama method for a class of stochastic differential algebraic system of index 1 with delay is presented,and it is proved that the method is convergent with order 1/2 in the mean-square sense.Numerical examples illustrate the convergence and effectiveness of the numerical method.
出处 《应用数学学报》 CSCD 北大核心 2010年第4期590-600,共11页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(10871078) 国家863高技术研究发展计划专项经费(2009AA044501)资助项目
关键词 随机延迟微分代数系统 EULER-MARUYAMA方法 均方相容 均方收敛 stochastic differential algebraic system with delay Euler-Maruyama method mean-square consistency mean-square convergence
  • 相关文献

参考文献12

  • 1Buckwar E. One-step Approximations for Stochastic Functional Differential Equations. J. Appl. Numer. Math., 2006, 56(5): 667-681.
  • 2Mao X. Numerical Solutions of Stochastic Functional Differential Equations. J. Comput. Math., 2003, 6:141-161.
  • 3Wang Z Y, Zhang C J. An Analysis of Stability of Milstein Method for Stochastic Differential Equations with Delay. J. Computers and Mathematics with Applications, 2006, 51:1445 1452.
  • 4Cao W R. Convergence and Stability of Several Numerical Methornds for Stochastic Delay Differential Equations. Harbin: Harbin Institute of Technology, 2004 (in Chinese).
  • 5Wang W Q. Convergence and Stability of Several Numerical Methomds for Nonlinear Stochastic Delay Differential Equations. Xiangtan: Xiangtan University, 2007 (in Chinese).
  • 6Schein O, Denk G. Numerical Solution of Stochastic Differential-algebraic Equations with Applications to Trunsient Noise Simulation of Microelectronic Circuis. J. Comput. Appl. Math., 1998, 100(1): 77- 92.
  • 7Christain P. Analysis and Numerical Integration of Stochastic Differential-algebraic Equations and Application in Electronic Circuit Simulation. Munich: Technische UniversitS.t Miinchen, 1999.
  • 8Gerdin M, Sjoberg J. Nonlinear Stochastic Differential-algebraic Equations with Application to Particle Filtering. J. IEEE Conference on Decision and Control, 2006, 45:6630-6635.
  • 9Winkler R. Stochastic Dfferential Algebraic Equations of Index 1 and Applications in Circuit Simulation. J. J. Comput. Appl. Math., 2003, 157(2): 477-505.
  • 10Alabert A, Ferrante M. Linear Stochastic Differential-algebraic Equations with Constant Coefficients. J. Electronic Communications in Probability, 2006, 11:316-335.

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部