期刊文献+

颗粒随机分布复合材料热传导问题均匀化方法的理论分析 被引量:2

Homogenous Method of Heat Transfer Problem of Composite Materials with Random Grains
原文传递
导出
摘要 针对区域内颗粒随机分布复合材料的热传导问题给出了一种均匀化理论计算温度场.首先根据复合材料的特性以及通过用多尺度方法预测复合材料热传导参数的要求定义了一些基本的概率空间,然后结合材料的物理特性做合理的假设得到了在整个随机复合材料区域上的期望温度场与均匀化温度场之间的一种理论估计,从而说明了此均匀化温度场可以作为预测此类随机颗粒分布复合材料期望温度场的理论基础. In this paper,a homogenous method to solve the heat transfer problem of the composite materials with random grains is presented.Firstly,based on the property of the composite material with random grains,some probability spaces for the composite material with random grain are introduced and some properties in these spaces are proved.Next,the error estimation between the expected temperature field and the homogenous temperature field is obtained under some suppositions,Finally,some conclusion and some remarks are drawn to illustrate the validity of this method for the composite materials with random grains.
出处 《应用数学学报》 CSCD 北大核心 2010年第4期652-662,共11页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(50778026) 教育部归国人员启动基金资助项目
关键词 半随机分布复合材料 热传导均匀化参数 均匀化方法 期望温度场 均匀化温度场 random grains homogenous coefficent homogeneization method expected temperature field homogenous temperature field
  • 相关文献

二级参考文献6

  • 1[2]Houman Borouchaki, Paul Louis George. Aspectsof 2-delaunay mesh generation[J]. International Journal for Numerical Methods in Engineering, 1997,40:1957-1975.
  • 2[4]Poul Louis George, Eric Seveno. The advancingfront mesh generation method revisited[J]. International Journal for Numerical Methods in Engineering, 1994,37:1605-1619.
  • 3[5]Boender E. Reliable delaunay-based mesh genera-tion and mesh improvement[J]. Communication of Numerical Methods in Engineering,1994,10:773-783.
  • 4[6]Schutter G DE, Taerwe L. Random particle model for concrete based on delaunay triangulation[J]. Materials and Structure,1993,26:67-73.
  • 5崔俊芝,曹礼群.基于双尺度渐近分析的有限元算法[J].计算数学,1998,20(1):89-102. 被引量:30
  • 6曹礼群,罗剑兰.多孔复合介质周期结构热传导和质扩散问题的多尺度数值方法[J].工程热物理学报,2000,21(5):610-614. 被引量:10

共引文献46

同被引文献18

  • 1梁基照,李锋华.NR/中空微球复合材料传热的有限元分析[J].橡胶工业,2004,51(10):586-589. 被引量:7
  • 2王建稳,肖春来.非对称Possion跳——扩散模型的参数估计[J].数理统计与管理,2005,24(4):76-79. 被引量:4
  • 3叶宏,徐斌,王军,叶暖强,庄双勇.陶瓷微球填充型隔热涂料的有效导热系数[J].中国科学技术大学学报,2006,36(4):360-363. 被引量:13
  • 4Maxwell J C, Thompson J J. A treatise on electricity andmagnetism[M]. New York:Dover Publications, 1954.
  • 5Tsao T N G. Thermal conductivity of two phase materials[J]. Industrial and Engineering Chemistry,1961, 53 (5):395-397.
  • 6Cheng S C, Vachon R I. The prediction of the thermal con-ductivity of two and three phase solid heterogeneous mix-tures[JJ. International Journal of Heat Mass Transfer,1969,12(3):249-264.
  • 7Lewis T,Nielsen L. Dynamic mechanical properties of par-ticulate-filled polymers [ J]. Journal of Applied PolymerScience,1970,14(6):1449-1471.
  • 8Agari Y,Uno T, Estimation on thermal conductivities offilled polymers[J]. Journal of Applied Polymer Scicence,1986,32(7):5705-5712.
  • 9Agari Y, Ueda A, Nagai S. Thermal conductivity of poly-ethylene filled with disoriented short-cut carbon fibers[J].Journal of Applied Polymer Composite Science . 1991, 43(6):1117-1124.
  • 10Knott G M, Jackson T L,Buckmaster J. Random packingof heterogeneous propellants[J]. AIAA Journal, 2001, 39(4):678-687.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部