期刊文献+

非线性积分微分随机系统的完全可控性 被引量:1

Complete Controllability of Nonlinear Integrodifferential Stochastic Systems
下载PDF
导出
摘要 为了建立更一般的非线性随机系统的可控性判别准则,通过引入可控性算子和构造适当的反馈控制,利用Banach不动点定理,给出了一类中立型非线性积分微分随机系统完全可控的充分条件.研究结果表明,当非线性项和中立项的Lipschitz系数适当小时,系统仍然是完全可控的.文中还通过算例说明了结论的适用性. In order to establish criteria for the controllability of general nonlinear stochastic systems,the sufficient condition for the complete controllability of a class of neutral nonlinear integrodifferential stochastic systems is determined by introducing a controllability operator,constructing suitable feedback control and using the Banach fixed-point theorem.The results show that the systems are completely controllable when the Lipschitz coefficients of nonlinear and neutral terms are both small enough.The applicability of the obtained results is finally verified by an example.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第6期55-59,共5页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(60874114)
关键词 随机系统 可控性 BANACH不动点定理 stochastic systems controllability Banach fixed-point theorem
  • 相关文献

参考文献9

  • 1Mahmudov N I.Controllability of linear stochastic systems[J].IEEE Transactions on Automatic Control,2001,46(5):724-731.
  • 2Karthikeyan S,Balachandran K.Controllability of nonli-near stochastic neutral impulsive systems[J].Nonlinear Analysis:Hybrid Systems,2009,3(3):266-276.
  • 3Mahmudov N I.Controllability of semilinear stochastic systems in Hilbert spaces[J].Journal of Mathematical Analysis and Applications,2003,288(1):197-211.
  • 4Sakthivel R,Kim J H,Mahmudov N I.On controllability of nonlinear stochastic systems[J].Reports on Mathematical Physics,2006,58(3):433-443.
  • 5包俊东,邓飞其,罗琦.参数不确定分布时滞随机微分系统的指数稳定性(英文)[J].华南理工大学学报(自然科学版),2004,32(12):65-69. 被引量:6
  • 6Subalakshmi R,Balachandran K,Park J Y.Controllability of semilinear stochastic functional integrodifferential systems in Hilbert spaces[J].Nonlinear,Analysis,Hybrid Systems,2009,3(1):39-50.
  • 7Dauer J P,Mahmudov N I.Controllability of stochastic semilinear functional differential equations in Hilbert spaces[J].Journal of Mathematical Analysis and Applications,2004,290(2):373-394.
  • 8Balachandran K,Karthikeyan S.Controllability of nonli-near It type stochastic integrodifferential systems[J].Journal of the Franklin Institute,2008,345(4):382-391.
  • 9Mao Xuerong.Stochastic differential equations and applications[M].Chichester:Eilles Horwood,1997.

二级参考文献8

  • 1Afanasiev V N, Kalmanovskii V B, Nosov V R. Mathematical Theory of Control Systems Design [M]. Dordrecht: Kluwer Academic Publishers, 1996.
  • 2Kalmanovskii V B, Nosov V R. Stability of Functional Differential Equations [ M ]. London: Academic Press,1986.
  • 3Erik I V, Patrick F. Stability of stochastic systems with uncertain time delays [ J ]. Systems and Control Letters,1995,24:41 -47.
  • 4Benjelloun K, Boukas E K. Independent delay sufficient conditions for robust stability of uncertain linear timedelay systems with jumps [A]. Proceedings of The American Control Conference [C]. Albuquerque, 1997.3814 -3815.
  • 5Patrick F. Stability of some linear stochastic systems with delays [ A ]. Proceedings of The 40th IEEE Conference on Decision and Control [C]. Oriando, 2001. 4744-4 745.
  • 6Cadenillas A. A stochastic maximum principle for systems with jumps, with applications to finance [J]. Systems and Control Letters,2002,47:433 - 444.
  • 7Mao X, Koroleva N, Rodkina A. Robust stability of uncertain stochastic differential delay equations [J]. System and Control Letters, 1998,35:325 - 336.
  • 8Wang Z,Huang B,Burnham K J. Stochastic reliable control of a class of uncertain time-delay systems with unknown nonlinearities [ J ]. IEEE Trans on Circuits and Systems(Ⅰ) :Fundamental Theory and Applications,2001,45(8):646 - 650.

共引文献5

同被引文献20

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部