期刊文献+

工艺参数对块体纳米晶Fe_3Al材料组织和性能的影响 被引量:2

Effect of Technical Parameters on Nanostructure and Mechanical Properties of the Bulk Nanocrystalline Fe_3Al
下载PDF
导出
摘要 通过铝热反应熔化方法分别在不同的引燃剂量,混料时间及成型压力下制备了块体纳米晶Fe3Al材料,通过XRD研究了材料的晶粒尺寸,并研究了材料的室温压缩性能和硬度。结果表明:随着引燃剂量的增加,晶粒尺寸先略降低后增加,屈服强度随之先略增加后减小,硬度逐渐减小;混料时间对材料的平均晶粒尺寸和力学性能的影响作用不大;随着成型压力的增加,材料的平均晶粒尺寸基本稳定,材料的屈服强度和硬度有所提高。 Bulk nanocrystalline Fe3Al materials were prepared by aluminothermic reaction at different igniter quantities,milling time,and molding pressure.The grain size was studied by means of XRD.Compressive strength and hardness of the materials were tested.The results showed that with igniter quantity increasing,the average grain size of materials reduced slightly,and then increased,while the yield strength increased slightly and then decreased;the hardness gradually decreased.The effect of milling time on nanostructure and mechanical properties of the bulk nanocrystalline Fe3Al materials is not remarkable.With the powder pressing increasing,the average grain size of materials is stable,yield strength and hardness of materials increased.
出处 《材料工程》 EI CAS CSCD 北大核心 2010年第7期18-23,共6页 Journal of Materials Engineering
基金 国家自然科学基金(50674051)
关键词 引燃剂量 混料时间 成型压力 晶粒尺寸 力学性能 铝热反应 igniter quantity milling time powder pressing grain size mechanical property aluminothermic reaction
  • 相关文献

参考文献15

  • 1LI Ya-jiang,WANG Juan,WU Hui-qiang.XRD and TEM analysis of Fe3Al alloy layer on the surface of the calorized steel[J].Materials Research Bulletin,2001,36(13):2389-2394.
  • 2WESTBROOK J H,FLEISCHER R L.Structural applications of intermetallic compounds[J].Intermetallic Compounds,2000,3(5):182-196.
  • 3JOSEF P,GUIDO S.The relation between the shape of the stress anomaly and the structure of Fe3Al alloys[J].Intermetal-lics,2002,10(7):717-722.
  • 4杨峥,王燚,周爱民,方玉诚.Fe_3Al合金100~300℃抗拉强度的反常温度现象[J].钢铁研究学报,2002,14(2):25-27. 被引量:6
  • 5MCKAMEEY C G,DEVAN J H,TORTORELLI P E.A review of recent development in Fe3Al-based alloys[J].Journal of Materials Research,1991,6(8):1779-1785.
  • 6FAIR G H,WOOD J V.Mechanical alloying of Fe-Al intermetallics in the DO3 composition range[J].Journal of Materials Science,1994,29:1935-1939.
  • 7BONETTI E,VALDRE G,ENZO S.Nanostructured Fe3Al intermetallic obtained by mechanical alloying and thermal ageing[J].Nanostructured Materials,1993,2(4):369-375.
  • 8LI Hong-Qi,EBRAHIMI F.Ductile-to-brittle transition in nanocrystalline metals[J].Advanced Materials,2005,17(16):1969-1972.
  • 9TREDWAY W K.Toughened ceramics[J].Science,1998,282(11):1275-1283.
  • 10ZHU Su-Ming,TAMURA M,SAKAMOTO K,et al.Characterization of Fe3Al-based intermetallic alloys fabricated by mechanical alloying and HIP consolidation[J].Materials Science and Engineering A,2000,292(1):83-89.

二级参考文献25

  • 1哈宽富.金属力学性质的微观理论[M].北京:科学出版社,1991.245-247.
  • 2Zuhair A Munir, Tamburini A. Self-propagating exothermic reactions: The synthesis of high temperature materials by combustion[J]. Materials Science Reports, 1989, 3(7,8): 277.
  • 3Stephen D Dunmead, Zuhair A Munir. Temperature profile analysis in combustion synthesis: Theory and background[J]. J Am Ceram Soc, 1992, 75(1):175.
  • 4Merzhanov A G,Borovinskaya I P, Dokl Akad Nauk. Self-propagating high temperature synthesis of inorganic compounds[J]. SSSR, 1972, 204(2): 429.
  • 5Zhang Yangsheng, Gregory C. Stangle a micromechanistic model of the combined combustion synthesis-densification process[J]. J Mater Res, 1995, 10(7): 1828.
  • 6Kotin I. Nonlinear characteristics of combustion wave in SHS[A]. Conference Paper: Symposium on SHS-1999[C]. Moscow, 1999. 3-6.
  • 7Fu Z Y, Wang H, Wang W M, et al. Process study on SHS of ceramic-metal composites[J]. Inter J of SHS,1993, 2(5) :175.
  • 8Itoh T, Wanibe Y, Sakao H. Relation between packing density and particle size distribution in random packing models of powders[J]. J Japan Inst Metals, 1986,50(8):740.
  • 9Zhang Yangsheng, Gregory C. Stangle a micromechanistic model of the combined combustion synthesis-densification process-Part Ⅰ:Theoretical development[J]. J Mater Res, 1995,10(9):2592.
  • 10Reyes S, Jensen F. Percolation concepts in modeling of gas-solid reactions-Ⅰ: Application to char gasification in the kinetic regime[J]. Chemical Engineering Science, 1986,40(2): 333

共引文献26

同被引文献20

  • 1Rafal Babilas,Anna Bajorek,Monika Spilka,Adrian Radoń,WojciechŁońskia.Structure and corrosion resistance of Al–Cu–Fe alloys[J].Progress in Natural Science:Materials International,2020,30(3):393-401. 被引量:4
  • 2石磊,赵齐,罗成,陈浩,杨继彪,张晓东,李贤斌.Cu含量和烧结温度对Fe-Cu基粉末冶金复合材料摩擦磨损性能的影响[J].材料研究学报,2020,34(2):137-150. 被引量:7
  • 3宋明志,安慧,赵军.熔盐电解法制备元素硼粉[J].辽宁化工,2004,33(8):469-470. 被引量:11
  • 4李海波,刘立华,刘梅,郑伟涛.纳米Fe-Cu体系的结构和电阻温度特性[J].吉林大学学报(工学版),2006,36(4):476-479. 被引量:2
  • 5黄菊林.金属镁热还原制备非晶硼粉的研究[J].矿冶,1996,3(5):67-71.
  • 6EM1N D. Icosahedral boron-rich solids [J]. Physics Today, 1987, 20:55-62.
  • 7EREMETS M I, STRUZHK1N V V, MAO H K, et al. Superconductivity in boron [J]. Science, 2001, 293: 272-274.
  • 8WANG P, ORIMO S, FUJ]I H. Characterization of hydrogenated amorphous boron by a combination of infrared absorption spectroscopy and thermal analyses [J]. Journal of Alloys and Compounds, 2003, 359(1/2): L1-L3.
  • 9ABU-HAMED T, KARNI J, EPSTEIN M. The use of boron for thermochemical storage and distribution of solar energy [J]. Solar Energy, 2007, 81(1): 93-101.
  • 10Yi H C. Review of self-propagating high-temperature synthesis (SHS) of power-compacted materials [J]. Journal of Materials Science, 1990, 25: 1159-1168.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部