摘要
研究了一类旋转机械系统的复杂动力学行为.通过系统运动的拉格朗日方程和牛顿第二定律,建立了机械式离心调速器系统的动力学方程.通过系统的分岔图和Lyapunov指数研究了系统的混沌行为;基于Lyapunov稳定性理论,采用自适应控制方法对系统的未知参数进行辨识,通过构造合适的自适应控制律,成功地辨识了系统的所有未知参数;并用数值仿真进一步证明了该方法的有效性.
The complex dynamic behavior of the mechanical centrifugal flywheel governor system is studied.The dynamical equation of the system is established using Lagrangian and Newton's second law.By using the bifurcation diagram and Lyapunov exponents chaotic behavior of the system is studied.At the same time,based on the stability theory,accurate and fast identification is implemented by selecting right initial values,suitable adaptive law are given to identify any uncertain parameters of a class of nonautonmous chaotic systems.Theory analysis and numerical simulations are presented to verify that the adaptive control to identify the parameters is effective and feasible.
出处
《河北师范大学学报(自然科学版)》
CAS
北大核心
2010年第4期417-422,共6页
Journal of Hebei Normal University:Natural Science
基金
甘肃省教育厅自然科学基金(0608-04)
天水师范学院基金(TSA0938)