期刊文献+

水蒸气喷射泵混合室内边界层脱离现象的计算流体力学研究 被引量:4

Computational Fluid Dynamic Study of Boundary Layer Separation in Mixing Chamber of Steam Ejector
下载PDF
导出
摘要 为了深入了解水蒸气喷射泵内流场结构,采用文献[1]给出的物理模型,在保持其他条件不变情况下,采用计算流体力学模拟得到不同背压下喷射泵内部压力分布图和混合室内迹线图,模拟结果与实验数据有较好的一致性。通过分析迹线图中的边界层脱离现象和压力分布图中压力的关系,得出高压力梯度作用导致了引射流体边界层分离,而边界层分离后导致有效区减小,造成引射系数急剧下降。 The pressure profiles and the path-line distributions at different back pressures inside the steam ejector,with no change in other conditions,were numerically calculated via a number of computational fluid dynamic simulations,on the basis of the physical model,developed by Chunnanond,et al.The calculated results show that the high pressure gradient,evaluated from the pressure profiles and the path-line distributions,leads to the boundary layer separation in the mixing chamber of the steam ejector.In addition,the boundary layer separation reduces the effective area,and rapidly decreases the entrainment ratio.The simulated results were found to agree fairly well with the experimental data.
出处 《真空科学与技术学报》 EI CAS CSCD 北大核心 2010年第4期455-458,共4页 Chinese Journal of Vacuum Science and Technology
基金 中澳校际合作项目(No.74404015) 东北大学留学回国博士启动基金(No.18504032)
关键词 水蒸气喷射泵 流场结构 计算流体力学模拟 边界层分离 有效区 Steam ejector Flow structure CFD simulation Boundary layer separation Effective area
  • 相关文献

参考文献11

  • 1Sriveerakul T, Aphonnmtana S, Chunnanond K. Performance Prediction of Steam Ejector Using Computational Fluid Dynamics:Part 1 Validation of the CFD Results[J].International Journal of Thermal Sciences,2007,46:812- 822.
  • 2Chunnanond K, Aphornratana S. Ejectors: Applications in Refrigeration Technology[J]. Renewable and Sustainable Energy Reviews,2004, (8) : 129 - 155.
  • 3王晓冬,王维娜.RH真空精炼吹氩参数对循环流动影响的数值分析[J].真空科学与技术学报,2009,29(6):682-685. 被引量:15
  • 4Bartosiewicz Y, Aidoun Z, Mercadier Y. Numerical Assessment of Ejector Operation for Refrigemtion Applications Based on CFD [ J ]. Applied Thermal Engineering, 2006, 26: 604 - 612.
  • 5Hemidi A, Henry F, Leclaire S, et al. CFD Analysis of a Supersonic Air Ejector. Part 1: Experimental Validation of Single-Phase and Two-Phase Operation[ J] .Applied Thermal Engineering,2009,29 : 1523 - 1531.
  • 6Matsuo K, Miyazato Y, Kim H. Shock Train and Pseudo-Shock Phenomena in Internal Gas Flows[ J]. Progress in Aerospace Sciences, 1999,35 : 33 - 100.
  • 7Ouzzane M, Aidoun Z. Model Development and Numerical Procedure for Detailed Ejector Analysis and Design[J]. Applied Thermal Engineering, 2003,23: 2337 - 2351.
  • 8Bartosiewicz Y, Aidoun Z, Desevaux P, et al. Numerical and Experimental Investigations on Supersonic Ejectors[J]. International Journal of Heat and Fluid Flow,2005,26:56- 70.
  • 9FLUENT 6. 2 User' s guide [ M ]. USA: FLNENT INC Lebanon, 2005.
  • 10Varga S, Oliveira A C, Diaconu B. Numerical Assessment of Steam Ejector Efficiencies Using CFD[J]. International Journal of Refrigeration,2009,32(6) : 1203 - 1211.

二级参考文献12

  • 1李宝宽,栾叶君,齐凤升,霍慧芳.带有旋流的RH精炼系统循环流动的实验研究[J].东北大学学报(自然科学版),2005,26(8):759-762. 被引量:4
  • 2刘浏.RH真空精炼工艺与装备技术的发展[J].钢铁,2006,41(8):1-11. 被引量:54
  • 3Satish Kumar AJMANI,Sukanta K. DASH. Mixing Evaluation in the RH Process Using Mathematical Modeling. ISIJ International,2004,44(1) :82 - 90.
  • 4Hibiki T, Ishii M. One-group interfacial area transport of bubbly flows in vertical round tubes, Int. J. Heat Mass Trans., 2000,43:2711 - 2726.
  • 5Young-Geun PARK, Kyung-Woo YI. A New Numerical Model for Predicting Carbon Concentration during RH Degassing Treatment. ISIJ International,2003,9:1403 - 1409.
  • 6Baokuan LI and Fumitaka Tsukihashi. Effect of Rotating Field on Two-phase Flow in RH Vacuum Degassing Vessel. ISIJ International, 2005,45 (7) : 972 - 978.
  • 7Ishii M, Zuber N. Drag coefficient and relative velocity in bubbly, droplet or particulate flows. AIChE. J., 1979,5: 843 - 855.
  • 8Drew D A, Lahey R T Jr. Application of general constitutive principles to the derivation of multidimensional two-phase flow equation. Int. J. Multiphase Flow, 1979,5:243 - 264.
  • 9Li B K, Tsukihashi F. Modeling of Circulating Flow in RH Degassing Vessel Water Model Designed for Two- and Mutilegs Operations [ J]. ISIJ International, 2000, 40( 12): 1203 - 1209.
  • 10许海虹,朱苗勇.RH精炼装置内钢液循环流量的数学模型.2001年中国钢铁年会论文集:615-619.

共引文献14

同被引文献43

  • 1王常斌,林建忠,石兴.射流泵最佳参数的确定方法[J].流体机械,2004,32(9):21-25. 被引量:42
  • 2李海军,沈胜强,张博.蒸汽喷射器内二维流场的数值模拟研究[J].热科学与技术,2004,3(4):353-357. 被引量:13
  • 3王常斌,林建忠,石兴.射流泵湍流场的数值模拟与实验研究[J].高校化学工程学报,2006,20(2):175-179. 被引量:29
  • 4Kanjanapon Chunnanond, Satha Aphornratana. An Experimental Investigation of a Steam Ejector Refrigerator[ J ]. Applied Thermal Engineering, 2004,24 : 311 - 322.
  • 5Wang Xiaodong, Luo Meiling, Sherman C P, et al. Numerical Study on Performances of Steam-Jet Pump at Different Operating Conditions[C]. 9^th Vacuum Metallurgy and Surface Engineering Conference, Shenyang,2009.
  • 6Sriveerakul T, Aphomratana S, Chunnanond K. Performance Prediction of Steam Ejector Using Computational Fluid Dynamics:Part 2. Flow Structure of a Steam Ejector influenced by Operating Pressures and Geometries [ J ]. International Journal of Thermal Sciences, 2007,46: 823 - 833.
  • 7Launder B E, Spalding D B. The Numerical Computation of Turbulent Flows [J]. Comp Meth Appl Mech Eng, 1974,3: 269 - 289.
  • 8Shih T H, Liou W W, Shabbir A, et al. A New k-ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows[ J ]. Comp Fluids, 1995,24 : 227 - 238.
  • 9Pianthong K, Seehanam W, Behnia M, Sriveerakul, et al. Investigation and /mprovement of Ejector Refrigeration System Using Computational Fluid Dynamics Technique [ J ]. Energy Conversion and Management, 2007,48 : 2556 - 2564.
  • 10Sriveerakul T, Aphormmtana S, Chunnanond K. Performance Prediction of Steam Ejector Using Computational Fluid Dynamics: Part 1. Validation of the CFD Results [J]. International Journal of Tnennal Sciences,2007,46:812- 822.

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部