期刊文献+

基于改进支持向量机的隐写分析方法

Steganalysis method based on improved SVM
下载PDF
导出
摘要 为了更有效地提高图像隐写分析的速度和正确检测率,提出了一种基于改进的支持向量机的隐写分析方法。采用Frid-rich提出的多特征融合提取算法对图像进行特征提取,克服了单一特征不能很好描述图像差别的不足。然后提出了一种将最小二乘法与超球体一类支持向量机(HSOC-SVM)相结合的分类器——最小二乘超球一类支持向量机(LSHS-OCSVM),并与目前广泛使用的FLD和非线性SVM分类器作对比实验。结果表明,方法是一种有效、高速的隐写分析方法。 To enhance the speed and correct examination rate of image steganalysis,this paper provides a new steganalysis method based on the improved SVM.It uses mixture of a few features discussed by Fridrich to extract the features of images,and overcomes the shortcomings that using only one feature can not present image differences well.Then a new classification,Least Square Hyper Sphere One-Class SVM(LSHS-OCSVM) which combines least square programme and the sphere one-class SVM,is provided.Compared with FLD and nonlinear SVM widely used at present,the experiment results prove that it is an effective steganalysis method with high-speed detection.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第21期97-99,共3页 Computer Engineering and Applications
基金 国家自然科学基金No.60842006~~
关键词 隐写分析 特征提取 最小二乘超球一类支持向量机 分类器 steganalysis feature extraction Least Square Hyper Sphere One-Class SVM(LSHS-OCSVM) classification
  • 相关文献

参考文献10

  • 1杨纪龙,杜秀丽,姚奕,等.全美经典学习指导系列--统计学[M].北京:科学出版社,2002.
  • 2彭淑敏,王军宁.基于神经网络的图像识别方法[J].电子科技,2005,18(1):38-41. 被引量:21
  • 3Vapnik V N.The nature of statistical learning theory[M].2nd ed. New York: Springer-Verlag,2000.
  • 4Vapnik V N.Statistical learning theory[M].[S.l.]:Wiley, 1998.
  • 5Scholkopf B, Burges C J C, Vapnik V.Extracting support data for a given task[C]//Proceedings of 1st International Conference on Knowledge Discovery & Data Mining.Menlo Park, CA: AAAI Press, 1995.
  • 6朱美琳,刘向东,陈世福.用球结构的支持向量机解决多分类问题[J].南京大学学报(自然科学版),2003,39(2):153-158. 被引量:48
  • 7Fridrich J.Feature-based steganalysis for JPEG images and its implications for future design of steganographic schemes[C]// Proceedings of the 6th International Workshop on Information Hiding, 2005: 67-81.
  • 8李国正,王猛,曾华军.支持向量机导论第2章[M].北京:电子工业出版社,2006.
  • 9Platt J.Sequential minimal optimization: A fast algorithm for training support vector machines, Technical Report MSR-TR-98-14[R].1998.
  • 10Platt J.Fast training of support vector machines using sequential minimal optimization[C]//Scholkopf B.Advances in Kernel Methods-Support Vector Learning, Cambridge.MIT Press, 1999: 185-208.

二级参考文献14

  • 1Vapnik V. The nature of statistical learning theory. New York: Springer-Verlag, 1995, 5-13.
  • 2Burges C J C, Scholkopf B. Improving the accuracy and speed of support vector learning machines.Advances in Neural Information Processing Systems 9. Cambridge: MIT Press, 1997: 375-381.
  • 3Blanz V, Scholkopf B, Bultho H, et al. Comparison of view-based object recognition algorithms usingrealistic 3D models. Artificial Neural Networks - ICANN'96. Berlin: Springer Lecture Notes in Computer Science, 1996: 251-256.
  • 4Joachims T. Text categorization with support vector machines: Learning with many relevant features.Proceedings of the European Conference on Machine Learning. Berlin: Springer, 1998:137-142.
  • 5Drucker H, Wu D, Vapnik V. Support vector machines for span categorization. IEEE. Transactions on Neural Networks, 1999, 10(5): 1 048-1 054.
  • 6Muller K R, Smola A J , Ratsch G, et al. Predicting time series with support vector machines. Artificial Neural Networks - ICANN'97. Berlin: Springer Lecture Notes in Computer Science, 1997:999-1 004.
  • 7Brown M P S, Grundy W N, Lin D, et al. Knowledge-based analysis of microarray gene expression data using support vector machines. Proceedings of the National Academy of Sciences, 2000, 97( 1): 262-267.
  • 8Kreβel U. Pairwise classification and support vector machines. Advances in Kernel Methods. Cambridge:MIT Press, 1999, 255-268.
  • 9Guo G, Li S, Chan K. Face recognition by support vector machines. Proceedings of the International Conferences on Automatic Face and Gesture Recognition. 2000: 196-201.
  • 10Mattera D, Haykin S. Support vector machines for dynamic reconstruction of a chaotic system, Advances in Kernel Methods - Support Vector Learning. Cambridge: MIT Press, 1999: 211-242.

共引文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部