期刊文献+

离群数据挖掘方法在电力负荷预测中的应用 被引量:1

Outlier data mining application in power load forecasting
下载PDF
导出
摘要 根据负荷预测的理论,通过历史数据为基础进行电力负荷数据预测。由于实际运行过程中,采集数据存在错误,使得获得到的负荷预测曲线包含较大的锯齿状。提出一种新的离群数据挖掘方法,即求二直线的夹角方法寻找尖锐点,离群数据为尖锐点处对应电力负荷有功值,然后使用曲线平滑的方法对这些离群数据进行了处理。实验证明,运用提出的这一新的离群数据挖掘方法处理负荷预测曲线,预测结果明显改进。 According to the theory of power load forecasting,data mining based on historical data of power load data is used in load predicting.For practical operation process,there is an error in data collection,so load forecasting curve contains bigger saw tooth.This paper presents a new outlier data mining approach.It finds the sharp angle points between two straight,which correspond to outliers of power load value,and smoothes the curve at same time outliers are treated.Experiments show that after the new outlier mining approach is applied,load forecast results have improved significantly.
作者 史东辉
出处 《计算机工程与应用》 CSCD 北大核心 2010年第21期213-215,共3页 Computer Engineering and Applications
基金 安徽建筑工业学院2007硕博科研基金
关键词 离群数据 负荷预测 直线夹角 平滑 outlier data power load forecasting the sharp angle points between two straight smooth
  • 相关文献

参考文献6

  • 1史东辉.使用统计变异指标研究离群数据挖掘方法[J].计算机工程与应用,2009,45(17):125-128. 被引量:3
  • 2史东辉,蔡庆生,倪志伟,张春阳.基于规则的分类数据离群挖掘方法研究[J].计算机研究与发展,2000,37(9):1094-1100. 被引量:22
  • 3史东辉,张春阳,蔡庆生.离群数据的挖掘方法研究[J].小型微型计算机系统,2001,22(10):1234-1236. 被引量:16
  • 4Knott E, Ng R.Finding intensional knowledge of distance-based[C]//Proceedings of the 25th VLDB Conference, Edinburgh, Scotland, 1999.
  • 5Ramaswamy S, Rastogi R, Kyuseok S.Efficient algorithms for mining outliers from large data sets[C]//Chen W,Naughton J F, Bemstein P A.Proceedings of the ACM SIGMOD International Conference on Management of Data.Dallas,Texas:ACM Press, 2000: 427-438.
  • 6Arning A, Agrawal R, Raghavan P.A linear method for deviation detection in large databases[C]//Int'l Conference on Knowledge Discovery in Databases and DataMining(KDD-95), Portland, Oregon, 1996.

二级参考文献19

  • 1Arning A,Agrawal R,Raghavan P.A linear method for deviation detection in large databases[C]//Int'l Conference on Knowledge Discovery in Databases and DataMining(KDD-95),Portland,Oregon, August 1996.
  • 2Ramaswamy S, Rastogi R, Kyuseok S.Efficient algorithms for mining outliers from large data sets[C]//Chen W,Naughton J F,Bemstein P A.Proceedings of the ACM SIGMOD International Conference on Management of Data.Dallas,Texas : ACM Press, 2000:427-438.
  • 3Knorr E,Ng R.Finding intensional knowledge of distance-based[C]// Proceedings of the 25th VLDB Conference,Edinburgh,Scotland, 1999.
  • 41,Knorr E, Ng R. Algorithms for mining distance-based outliers in large datasets. In: Proc of the 24th VLDB Conf. New York, 1998. 392~403
  • 52,Barnett V, Lewis T. Outliers in Statistical Data. New York: John Wiley & Sons,1994
  • 63,Knorr E, Ng R. A unified approach for mining outliers: Properties and computation. In: Proc of 1997 Int'l Conf on Knowledge Discovery and Data Mining( KDD'97). Newport Beach, California, 1997. 219~222
  • 74,Knorr E, Ng R. Finding intensional knowledge of distance-based. In: P roc of the 25th VLDB Conf. Edinburgh, Scotland, 1999. 211~222
  • 85,Breuning M, Kriegel H, Ng R. OPTICS-OF: Identifying local outliers. I n: Proc of the 3rd European Conf on Principles and Practice of Knowledge Discove ry in Databases(PKDD'99). Prague, 1999. 262~270
  • 96,Arning A, Agrawal R, Raghavan P. A linear method for deviation in larg e database. In: Proc of Int'l Conf on Data Mining and Knowledge Discovery(KDD'9 6). Portland, 1996. 164~169
  • 107,Guha S, Rastogi R, Shim K. Rock: A robust clustering algorithm for cat egorical attributes. In: Proc of 1999 Int'l Conf on Data Engineering. Sydney, 19 99. 512~521

共引文献36

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部