摘要
提出了具有饱和发生率和免疫响应的病毒感染数学模型,得到了基本再生数R0的表达式.当R0〈1时,证明了无病平衡点是全局渐近稳定的;当R0〉1时.得到了免疫耗竭平衡点和持续带毒平衡点局部渐近稳定的条件.
A viral infection model with saturation incidence is investigated in this paper, the basic reproductive number R0 is obtained. It is proved that the infection-free equilibrium is global asymptotically stable if R0 〈 1, and the conditions of the local stabilities of the immune-exhausted equilibrium and infected equilibrium are also obtained if R0 〉 1.
出处
《数学的实践与认识》
CSCD
北大核心
2010年第14期121-125,共5页
Mathematics in Practice and Theory
基金
国家自然科学基金(60674059)
关键词
病毒感染模型
饱和发生率
稳定性
基本再生数
virai infection model
saturation incidence
stability
basic reproductive number