期刊文献+

具有饱和发生率和免疫响应的病毒感染模型的稳定性分析 被引量:1

Stability Analysis of a Viral Infection Model with Saturation Incidence and Immune Response
原文传递
导出
摘要 提出了具有饱和发生率和免疫响应的病毒感染数学模型,得到了基本再生数R0的表达式.当R0〈1时,证明了无病平衡点是全局渐近稳定的;当R0〉1时.得到了免疫耗竭平衡点和持续带毒平衡点局部渐近稳定的条件. A viral infection model with saturation incidence is investigated in this paper, the basic reproductive number R0 is obtained. It is proved that the infection-free equilibrium is global asymptotically stable if R0 〈 1, and the conditions of the local stabilities of the immune-exhausted equilibrium and infected equilibrium are also obtained if R0 〉 1.
出处 《数学的实践与认识》 CSCD 北大核心 2010年第14期121-125,共5页 Mathematics in Practice and Theory
基金 国家自然科学基金(60674059)
关键词 病毒感染模型 饱和发生率 稳定性 基本再生数 virai infection model saturation incidence stability basic reproductive number
  • 相关文献

参考文献5

  • 1Lewin S, Waiters T, Locarnini S. Hepatitis B treatment: rational combination chemotherapy based on viral kinetic and animal model studies[J]. Antiviral Research, 2002, 55(3): 381-396.
  • 2Nowak M A, May R M. Virus dynamics[M]. Oxford: Oxford University Press, 2000.
  • 3Kermack W O, Mckendrick A G. Contributions to the theory of epidemics[J]. Proc Roy Soc, 1927(Al15): 700-721.
  • 4Song X Y, Neumann A U. Global stability and periodic solution of the viral dynamics[J]. J Math Anal Appl, 2007, 329: 281-297.
  • 5Hethcote H W, Driessche P. Some epidemiological models with nonlinear incidence[J]. J Math Biol, 1991, 29(3): 271-287.

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部