期刊文献+

强哈密尔顿连通有向图的一个注记 被引量:1

A Note on Strongly Hamiltonian-Connected Digraphs
原文传递
导出
摘要 利用收缩技术,证明了1)阶为n=2k且最小半度至少是南的有向图D是强哈密尔顿连通的,除非D属于某些图类;2)2强连通且包含n个顶点、(n-1)(n-2)+4条弧的有向图是强哈密尔顿连通的,除非D属于某些图类. Using the contraction technique, we prove that i) a digraph D of order n = 2k with minimum semi-degree at least k is strongly Hamiltonian-connected unless D is included in some exceptional classes of digraphs, and that ii) a 2-strong digraph D with n vertices and (n-1)(n-2)+4 arcs is strongly Hamiltonianconnected unless D belongs to some exceptional classes of digraphs.
出处 《数学的实践与认识》 CSCD 北大核心 2010年第14期178-182,共5页 Mathematics in Practice and Theory
基金 山西省自然科学基金(2007011002) 太原科技大学青年基金(20083018)
关键词 收缩 强略密尔顿连通 最小半度 contraction strongly Hamiltonian-connected minimum semi-degree
  • 相关文献

参考文献5

  • 1ZHAO L C, MENG J H. A sufficient condition for Hamiltonian cycles in digraphs[J]. Australas J Combin, 1991, 32: 335-338.
  • 2GUO Y. Strongly Hamiltonian-connected locally semicomplete digraphs[J]. J Graph Theory, 1996, 22(1): 65-73.
  • 3BANG-JENSEN J, GUTIN G. Digraphs: Theory, Algorithms and Applications[M]. London: Springer- verlag, 2000.
  • 4THOMASSEN C. Long cycles in digraphs[J]. Proc London Math Soc, 1981, 42: 231-251.
  • 5BERMOND J C, GERMA A, HEYDEMANN M C, Sotteau D. Chemins et circuits dans les graphes orientes[M]. Montreal, North Holland, New York: Proc Coll Franco-Canadien de Combinatoire, 1980.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部