摘要
当生灭过程不唯一,且附加的虚状态∞是“瞬时”且正则时,其轨道结构是异常复杂的.主要工作是利用Ito的游程理论来分析处理这种生灭过程,研究其轨道性质,并最终得到预解式.此预解式具有清楚的概率意义,能够直观地反映生灭过程的轨道结构.
For the non-unique birth and death process with ∞ instantaneous and regular, the sample path structure is extremely complicated. The main jobs in this paper are to analyze and treat this kind of birth and death process utilizing Ito's excursion theory, study it's sample path properties, and finally obtain it's resolvent.This resolvent possesses a definite probability meaning, and it can reflect the path structure of birth and death process clearly and directly.
出处
《数学的实践与认识》
CSCD
北大核心
2010年第14期203-207,共5页
Mathematics in Practice and Theory
基金
河南省教育厅自然科学研究项目(2009B110014)
洛阳师范学院青年科学基金(2009-qnjj-012)