期刊文献+

具有Beddington-DeAngelis功能性反应的生态流行病模型

Eco-epidemiology model with Beddington-DeAngelis functional response
下载PDF
导出
摘要 研究了捕食者具有Beddington-DeAngelis功能性反应且食饵具有流行病的捕食模型,此模型考虑的是脉冲释放染病害虫和自然天敌.利用Floquet乘子理论、小振幅扰动技巧和比较定理证明了易感害虫根除周期解的全局稳定性以及系统持续生存的充分条件.结论表明当染病害虫的脉冲释放量p>p*时,易感害虫灭绝;反之,系统持续生存.因此可以选择合适的参数p、q、T对害虫进行控制,为现实的害虫管理提供了理论依据与数据依据. A predator-prey model with Beddington-DeAngelis functional response for the predator and infectious disease in the prey is studied,which considers impulsive releases of infective pests and natural enemies. The sufficient conditions of globally asymptotic stability of susceptible pest-eradication periodic solution and the permanence of the system are obtained by using Floquet's theorem,small-amplitude perturbation skills and comparison theorem. The results indicate that the susceptible pest will die out if the impulsive release amount of infected pests pp*,whereas the system is persistent. Therefore,appropriate parameters p,q,T should be chosen for the control of the susceptible pest,which provides a theoretical basis and data basis for the practical pest management.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2010年第4期619-624,共6页 Journal of Dalian University of Technology
基金 国家自然科学基金资助项目(10771179)
关键词 脉冲 染病个体 全局稳定 一致持久 impulsion infected individual global stability uniform permanence
  • 相关文献

参考文献7

  • 1KOSS A M, SNYDER W E. Alternative prey disrupt biocontrol by a guild of generalist [J]. Biological Control, 2005, 32(2) :243-251.
  • 2HAJEK A E, LEGER S R J. Interactions between Iungal pathogens and insect hosts [J]. Annual Review of Entomology, 1994, 39:293-322.
  • 3BEEGLE C C, YAMAMOTO T. History of bacillus thuringiensis Berliner research and development [J]. Canadian Entomologist, 1992, 124(44) :587-616.
  • 4AIELLO W G, FREEDMAN H I. A time-delay model of single-species growth with stage-structured [J]. Mathematical Bioseienees, 1990, 101(2): 139-153.
  • 5XIAO Y N, CHEN L S. A ratio-dependent predator-prey model with disease in the prey [J]. Applied Mathematics and Computation, 2002, 131(23) :397-414.
  • 6LAKSHMIKANTHAM V, BAINOV D D, SIMEONOV P. Theory of Impulsive Differential Equations [M]. Singapore:World Scientific, 1989.
  • 7BAINOV D D, SIMEONOV P. Impulsive Differential Equations:Periodic Solutions and Applications [M]. New York:John Wiley & Sons Inc. , 1993.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部