期刊文献+

复杂动态网络的自适应多目标控制 被引量:1

Adaptive Multiple Objects Control of Complex Dynamical Networks
下载PDF
导出
摘要 针对研究复杂动态网络多目标控制问题,网络中节点间的耦合强度不随时间变化等特点,提出了一种新型的分布式控制策略和节点之间的耦合强度自适应调整的方法,使网络达到多个控制目标。其中分布式控制策略和耦合强度自适应调整方法仅利用节点的局部信息,使设计的控制器易于实施。利用构建李亚普诺夫函数的方法,给出了网络全局稳定到多个控制目标的条件。当单个节点的动力学函数为混沌的洛仑兹系统时,在典型的无标度网络上进行仿真,结果证实了自适应方法的有效性。 Now,most of the researches in complex dynamical networks has only one object,and the coupling strength between nodes does not change with time,a novel distributed control strategy and an adaptive method of the coupling strength between nodes are proposed to make a complex network achieve multiple objects.The distributed control strategy and the adaptive method are only based on the node' s local information,which means that the designed controllers are easy to be applied.By the method of constructing a Lyapunov function,a sufficient condition is given,under which the network will globally stabilizes to multiple objects.When each isolated node' s dynamics is chaotic Lorenz system,the effectiveness of this adaptive method is verified on a typical scale -free network.
出处 《计算机仿真》 CSCD 北大核心 2010年第7期117-120,共4页 Computer Simulation
关键词 复杂网络 多目标 自适应 Complex network Multiple objects Adaptive
  • 相关文献

参考文献12

  • 1A L Barabasi,R Albert.Emergence of scaling in random networks[J].Science,1999,286:509-512.
  • 2S Boccaletti,V Latora,Y Moreno,M Chavez M D U Hwang.Complex networks:Structure and dynamics[J].Physics Reports,2006,175-308.
  • 3S H Strogatz,I Stewart.Coupled oscillators and biological synchronization[J].Science American,1993,269:102-109.
  • 4P Mohanty.Nanotechnology:Nano-oscillators get it together[J].Nature,2005,437(7057):325-326.
  • 5M Chavez,et al.Synchronization is enhanced in weighted complex networks[J].Physical Review Letters,2005,94:218701.
  • 6LU Xin biao,WANG Xiao fan,LI Xiang,FANG Jin qing.Synchronization in weighted complex networks:heterogeneity and synchronizability[J].Physica A,2006,370:381-389.
  • 7M Barahona,L M Pecora.Synchronization in small-world systems[J].Physical Review Letters,2004,89(5):054101.
  • 8J D Skufca,E M Bollt.Communication and synchronization in disconnected networks with dynamic topology:moving neighborhood networks[J].Mathematical Biosciences and Engineering,2004,1(2):347-359.
  • 9D V Senthilkumar,M Lakshmanan.Intermittency transition to generalized synchronization in coupled time-delay systems[J].Physical Review E,2007,76(6):066210.
  • 10P D Lellis,M D Bernardo,F Sorrentino,A Tierno.Adaptive synchronization of complex networks[J].International Journal of Computer Mathematics,2008,85(8):1189.

二级参考文献20

  • 1S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.U. Hwang, Physics Reports 424 (2006) 175.
  • 2X.F. Wang, Int. J. Bifurcation & Chaos 12 (2002) 885.
  • 3X. Li and X.F. Wang, IEEE Transactions on Automatic Control 1 (2006) 534.
  • 4X.F. Wang and G.R. Chen, IEEE Transactions on Circuits and Systems-I 49 (2002) 54.
  • 5C.W. Wu, IEEE Transactions on Circuits and Systems-I 50 (2003) 294.
  • 6C.W. Wu, IEEE Transactions on Circuits and Systems-II 52 (2005) 282.
  • 7X.B. Lu, X.F. Wang, X. Li, and J.Q. Fang, Physica A 370 (2006) 381.
  • 8X.B. Lu, X. Li, and X.F. Wang, Commun. Theor. Phys. (Beijing, China) 45 (2006) 955.
  • 9X.B. Lu, X.F. Wang, and J.Q. Fang, Physica A 371 (2006) 841.
  • 10K. Kacperskia and J.A. Holyst, Physica A 269 (1999) 511.

共引文献2

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部