期刊文献+

基于独立分量分析的地震资料去噪技术 被引量:1

Seismic Data Noise-suppression Technique Based on Independent Component Analysis
下载PDF
导出
摘要 在地震勘探资料处理中,针对消除多次波干扰问题,为消除多次波,需要将含多次波地震数据与预测多次波进行自适应相减,自适应相减技术大多基于输出信号(有效信号)能量最小准则,在有效信号与多次波存在交叉或重叠时应用效果较差。针对上述问题,重点研究独立分量分析技术,通过估计多次波与有效信号的混合矩阵来实现二者的分离,达到消除多次波的目的。仿真试验结果表明,独立分量分析方法有效避免了常规技术的不足,在有效信号与多次波发生交叉或重叠时,依然能够有效消除多次波,同时较好保护有效信号,为地震勘测提供了令人满意的结果。 In seismic data processing,to eliminate the multiple in seismic data,an adaptive subtraction technique is often used to subtract the predicted multiple from the seismic data.However when the multiple and the available signal are crossed or overlapped,the adaptive subtraction technique based on minimizing the power of the output signal (available signal) cannot get accurate outcome.Aiming at this problem,this study investigates the Independent Component Analysis method.The method can separate multiple and the available signal by estimating their mixture matrix.The results of simulation and actual seismic data processing show this method can efficiently suppress the multiple and protect the available signal compared with the conventional technique,when the multiple and the available signal are crossed or overlapped.
出处 《计算机仿真》 CSCD 北大核心 2010年第7期253-257,共5页 Computer Simulation
关键词 有效信号 多次波干扰 匹配滤波 独立分量分析 Available signal Multiple Adaptive subtraction technique Independent component analysis(ICA)
  • 相关文献

参考文献10

  • 1黄新武,孙春岩,牛滨华,王焕弟,曾闽山.基于数据一致性预测与压制自由表面多次波——理论研究与试处理[J].地球物理学报,2005,48(1):173-180. 被引量:44
  • 2牛滨华,沈操,黄新武,孙春岩,罗小明,王玉学,吴亚东,李明娟.波动方程压制多次波的技术方法[J].地学前缘,2002,9(2):511-517. 被引量:23
  • 3D J Verschuur,A J Berkhout.Estimation of multiple scattering by iterative inversion,PartⅡ:Practical aspects and examples[J].Geophysics,1997,62(5):1596-1611.
  • 4D J Monk.Wave-Equation multiple suppression using constrained gross equalization[J].Geoghysics Prospecting,1993,41(6):725-736.
  • 5Y Wang.Multiple subtraction using an expanded multichannel matching filter[J].Geophsics,2003,68:346-354.
  • 6C A Joyce,I F Gorodnitsky,M Kutas.Automatic removal of eye-movement and blink artifacts from EEG data using blind component separation[J].Psychophysiology,2004,41(2):313-325.
  • 7王晓伟,林锁.基于独立分量分析的混合声音信号分离[J].兵工自动化,2007,26(6):48-50. 被引量:3
  • 8Lu Wenkai.Adaptive multiple subtraction using independent component analysis[J].Geophysics,2006,71(5):179-184.
  • 9S S Chen,D L Donoho,M A Saunders.Atomic decomposition by basis pursuit[J].Scientific Computing,1998,20(1):31-61.
  • 10黄选红,韩继业.数学规划[M].北京:清华大学出版,2006.

二级参考文献36

  • 1渥·伊尔马兹.地震数据处理[M].北京:石油工业出版社,1993.379-389.
  • 2RATCLIFE D W BRZOSTOWSKI M A.复杂地质条件下地震成像的实用方法[M].石油地球物理勘探局,1996.180-191.
  • 3俞寿朋.多次波问题的研究方向[A].美国勘探地球物理学家学会编.SEG第68届年会论文概要[C].北京:石油工业出版社,1999.212-223.
  • 4Weglein A B. Multiple attenuation: an overview of recent advances and the road ahead. The Leading Edge, 1999, 18(1): 40 ~ 44.
  • 5Hu T Y, White R E. Robust multiple suppression using adaptive beamforming. Geophys. Prosp., 1998, 46:227 ~ 248.
  • 6Lokshtanov D. Multiple suppression by single channel and multichannel deconvolution in the τ-p domain. 65th Ann. Internat.Mtg, Soc. of Expl. Geophys., 1995. 1482 ~ 1485.
  • 7Foster D J, Mosher C C. Suppression of multiple reflections using the Radon transform. Geophysics, 1992, 57:386 ~ 395.
  • 8Lokshtanov D E, Helle H B. An efficient f-k modeling approach in multiple elimination. 62nd Ann. Internat. Mtg, Soc. of Expl.Geophys., 1992. 1077 ~ 1080.
  • 9Landa E, Belfer I, Keydar S. A new method for multiple attenuation in the parabolic τ-p domain. 67th Ann. Internat. Mtg,Soc. of Expl. Geophys., 1997. 1402~1405.
  • 10Zhou B, Greenhalgh S A. Wave-equation extrapolation-based multiple attenuation: 2-D filtering in the f-k domain. Geophysics,1994, 59:1377 ~ 1391.

共引文献63

同被引文献10

  • 1A Hyvarinen,J Karhunen,oja Erkki著,周宗潭,等译.独立成分分析[M].北京:电子工业出版社,2007.
  • 2A Hyvarinen, P Ramkumar, L Parkkonen, R Haft. Independent component analysis of short - time Fourier transforms for spontane- ous EEG/MEG analysis [ J ]. Neurolmage, 2010, 49 ( 1 ) : 257:271.
  • 3S C Douglas, A Cichocki, S Amari. A bias removal technique for blind source separation with noisy measurements [J].Electronics Letters, 1998,34(14) :1379 - 1380.
  • 4Yang Yumin. Independent Component Analysis for Noisy Time - dependent Processes Using AR Source Model[ J]. Journal of Com- putational Information Systems, 2012,8 (20) :8455 - 8462.
  • 5A Hyvarinen. The Fixed - Point Algorithm and Maximum Likeli- hood Estimation or Independent Component Analysis [ J ]. Neural processing letters, 1999,10 ( 1 ) : 1 - 5.
  • 6J Cao, N Murata, S Amari, A Cichocki. A robust approach to in-dependent component analysis of signals with high - level noise measurements [ J ]. IEEE Transactions on Neural Networks, 2003,14(3) :631 -645.
  • 7张朝柱,张健沛,孙晓东.基于curvelet变换和独立分量分析的含噪盲源分离[J].计算机应用,2008,28(5):1208-1210. 被引量:10
  • 8陈寿齐,沈越泓,许魁.联合非高斯性和非线性自相关的有噪盲源分离算法[J].信号处理,2010,26(1):141-145. 被引量:2
  • 9蔡连芳,田学民.基于互累积量的有噪独立分量分析方法[J].计算机工程,2012,38(16):192-195. 被引量:3
  • 10杨竹青,李勇,胡德文.独立成分分析方法综述[J].自动化学报,2002,28(5):762-772. 被引量:148

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部