期刊文献+

基于模拟退火改进的实参遗传算法及其工程应用 被引量:2

Improving Real-parameter Genetic Algorithm Based on Simulated Annealing and It's Engineering Application
下载PDF
导出
摘要 由于继承性的问题,遗传算法在编码和解码中会花费大量的计算时间;另外,由于缺乏"爬山能力",遗传算法很容易早熟和局部收敛。提出一种新的自适应模拟退火遗传算法,具有遗传算法和模拟退火的优点,同时自适应机制的引入,保证了解的质量并提高了收敛速度。将这种方法应用于螺旋弹簧约束优化设计问题中,结果表明,尽管群体规模较小,但在处理复杂问题时,这种混合算法的全局搜索能力和收敛速度显著提高。 With its inheritance,genetic algorithm may spend much computation time in the encoding and decoding process.Also,since genetic algorithm lacks hill-climbing capacity,it easily fall in promatureness and local convergence.A novel adaptive real-parameter simulated annealing algorithm(ARSAGA) that maintains the merits of genetic algorithm(GA)and simulated annealing(SA)is proposed.Adaptive mechanisms are also added to insure the solution quality and to improve the convergence speed.This method to solve the helical spring constrained optimization design problem is applied.The results indicate that the global searching ability and convergence speed of this novel hybrid algorithm is significantly improved,even though small population size is used for a complex and large problem.
作者 阮国靖
出处 《科学技术与工程》 2010年第20期5046-5049,共4页 Science Technology and Engineering
关键词 遗传算法 模拟退火 自适应机制 优化设计 genetic algorithm simulated annealingadaptive mechanism optimization design
  • 相关文献

参考文献10

  • 1Davis L.Handbook of genetic algorithm.New York:Van Nostrand Reinhold,1991.
  • 2Goldberg D E.Genetic algorithms in search,optimization,and machine learning.Reading:Addison-Wesley 1989.
  • 3Dumitrache I,Buiu C.Genetic learning of fuzzy controllers.Math Comput Simul,1999;49:13-26.
  • 4Brown D,Huntley C,Spillane A A.A parallel genetic heuristics for the quadratic assignment problem.In:Proceeding of third international conference on neural networks 1989:406-415.
  • 5Jeong I K,Lee J J.Adaptive simulated annealing genetic algorithm for system identification.Eng Appl Artif Intell,1996;9:523-532.
  • 6Tan K C,Li Y,Murray-Smith D J,et al.System identification and linearization using genetic algorithms with simulated annealing.In:Proceeding IEEE Genetic Algorithms in Engineering System:Innovations and Applications,Conference Publication,1995;414,164-169.
  • 7Dejong K A.Analysis of the behavior of a class of geneticadaptive systems.PhD Thesis.University of Michigan,Ann Arbor,MI,1975.
  • 8Grefenstette J J.Optimization of control parameters for geneticalgorithms.IEEE Trans Syst Man Cybern,1986;SMC-16(1):122-128.
  • 9Schaffer J D,Caruana R A,Eshelman L J,et al.A study of control parameters affecting online performance on genetic algorithms for function optimization.In:Proceeding of the Third International Conference of Genetic Algorithms,1989.
  • 10Siddall J N.Optimal engineering design-principles and applications.New York,NY:Marcel Dekker,1982.

同被引文献18

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部