期刊文献+

求解约束优化的模拟退火PSO算法 被引量:18

Particle swarm optimization based on simulated annealing for solving constrained optimization problems
下载PDF
导出
摘要 针对有约束最优化问题,提出了基于模拟退火的粒子群优化(particle swarm optimization-simulated annealing,PSO-SA)算法。该算法利用模拟退火算法以一定概率接受较差点的概率突跳特性,克服粒子群优化算法易陷入局部最优的缺陷。采用可行性原则进行约束处理,并在模拟退火算法产生新粒子的过程中保留最优不可行解的信息,弥补了可行性原则处理最优点位于约束边界附近时存在的不足。4个典型工程优化设计的实验结果表明,该算法能够寻得更优的约束最优化解。 Considering to solve constrained optimization problems,a hybrid method combining particle swarm optimization(PSO) and simulated annealing(SA) is proposed.The probability jump property of SA is adopted to avoid PSO trapping into local optimum.A feasibility-based rule is used to solve constrained problems.This rule maybe invalid when the optimum is close to the boundary of constraint conditions,so the new particle containing the information of good infeasible solution is produced in the process of SA.The algorithm is validated using four standard engineering design problems,and the results indicate that PSO-SA can find out better optimum.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2010年第7期1532-1536,共5页 Systems Engineering and Electronics
关键词 粒子群优化 模拟退火 约束优化 可行性原则 particle swarm optimization(PSO) simulated annealing constrained optimization feasibility-based rule
  • 相关文献

参考文献10

  • 1Hu X H,Eberhart R.Solving constrained nonlinear optimization problems with particle swarm optimization[C] // Proc.of the Sixth World Multi-conference on Systematics,Cybernetics and Informatics,2002:203-206.
  • 2Sedlaczek K,Eberhard P.Constrained particle swarm optimization of mechanical systems[C] // 6th World Congresses of Structural and Multidisciplinary Optimization,2005:1-10.
  • 3Parsopoulos K E,Vrahatis M N.Unified particle swarm optimization for solving constrained engineering optimization problems[J].Lecture Notes in Computer Science,2005,3612(7):582-591.
  • 4He Qie,Wang Ling.A Hybrid particle swarm optimization with a feasibility-based rule for constrained optimization[J].Applied Mathematics and Computation,2007,186(2):1407-1422.
  • 5王华秋,曹长修.基于模拟退火的并行粒子群优化研究[J].控制与决策,2005,20(5):500-504. 被引量:45
  • 6Wang Xihuai,Li Junjun.Hybrid particle swarm optimization with simulated annealing[C] // Proc.of the 3rd International Conference on Machine Learning and Cybernetics,2004:2402-2405.
  • 7Deb K.An efficient constraint handling method for genetic algorithms[J].Computer Methods in Applied Mechanics and Engineering,2000,186(2):311-338.
  • 8Shi Yuhui,Eberhart Russell.A modified particle swarm optimizer[C] // Proc.of the IEEE Conference on Evolutionary Computation,1998:69-73.
  • 9Baykaso(g)lu A,Gindy N N Z.A simulated annealing algorithm for dynamic layout problem[J].Computers and Operations Research,2001,28(14):1403-1426.
  • 10Leticia C C,Susana C E,Carlos A C.Solving engineering optimization problems with the simple constrained particle swarm optimizer[J].Informatica,2008,32(10):319-326.

二级参考文献8

  • 1Shi Y,Eberhart R.A modified particle swarm optimizer[A].Proc IEEE Int'l Conf on Evolutionary Computation[C].Anchorage:IEEE Press,1998:69-73.
  • 2Shi Y,Eberhart R.Fuzzy adaptive particle swarm optimization[A].IEEE World Congress on Evolutionary Computation[C].Seoul,2001:101-106.
  • 3Fan den Bergh,Engelbrecht A P.Cooperative learning in neural networks using particle swarm optimizations[J].South African Computer J,2000,26(11):84-90.
  • 4Onbasoglu E,Ozdamar L.Parallel simulated annealing algorithms in global optimization[J].J of Global Optimization,2001,19(1):27-50.
  • 5Mitsunori M K,Tomoyuki H,Toshihiko F.Parallel simulated annealing with adaptive neighborhood determined by GA[A].Proc IEEE Int'l Conf Syst Man Cybern[C].Washington:Institute of Electrical and Electronics Engineers Inc,2003:26-31.
  • 6Robert J S,Jamsex J C,Ahmad F A.Approximation of nonlinear systems with radial basis function neural networks[J].IEEE Trans Neural Networks,2001,19(4):1-14.
  • 7谢晓锋,张文俊,杨之廉.微粒群算法综述[J].控制与决策,2003,18(2):129-134. 被引量:422
  • 8吕振肃,侯志荣.自适应变异的粒子群优化算法[J].电子学报,2004,32(3):416-420. 被引量:450

共引文献44

同被引文献196

引证文献18

二级引证文献133

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部