期刊文献+

神经网络主元分析的传感器故障诊断方法 被引量:16

Sensor fault diagnosis method based on neural network principal component analysis
下载PDF
导出
摘要 针对多传感器故障诊断问题,将神经网络引入主元分析(principal component analysis,PCA)模型之中,提出一基于主元分析的多传感器故障诊断模型。首先,应用传感器正常工作时测量的历史数据,由PCA模型得到所有传感器的预测值。其次,计算传感器系统的平方预期误差值(squared prediction error,SPE),根据系统的SPE值是否跳变,判定有无故障发生。通过分别重构单个传感器信号的SPE值来确定发生故障的传感器。最后,应用一个多传感器故障诊断仿真实例证明了该方案的可行性。 For the problem of sensor fault diagnosis,a sensor fault diagnosis model based on principal component analysis(PCA) and artificial neural network is proposed.Firstly,the forecasting values of sensors are available from historical data measured from sensors in fault-free condition based on PCA model.Secondly,the squared prediction error of the system is calculated,the fault occurred when the squared prediction error(SPE) is suddenly increased.Sensor values are reconstructed respectively to newly calculate the SPE to locate the faulty sensor.Finally,the method proposed is proved feasible and effective by a simulation of multiple sensor fault diagnosis.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2010年第7期1549-1552,共4页 Systems Engineering and Electronics
基金 国家自然科学基金(50775136) 上海市教委科研创新项目(10ZZ97 09YZ248)资助课题
关键词 主元分析 信号预测 故障检测 信号重构 故障隔离 principal component analysis signal forecast fault detection signal reconstruction fault isolation
  • 相关文献

参考文献16

二级参考文献98

  • 1黄孝彬,刘吉臻,牛玉广.主元分析方法在火电厂锅炉过程故障检测中的应用[J].动力工程,2004,24(4):542-547. 被引量:28
  • 2潘玉松,牛玉广,牛征,黄孝彬.基于子PCA模型的故障分离方法及其应用[J].华北电力大学学报(自然科学版),2005,32(3):32-35. 被引量:8
  • 3王学仁 王松桂.实用多元统计分析[M].上海:上海科学技术出版社,..
  • 4王学仁.地质数据的多变量统计分析[M].北京:科学出版社,..
  • 5Tu T M, Su S C, Shyu H C, et al. A new look at HIS-like image fusion methods[J]. Inf. Fusion, 2001, 2(3): 177- 186.
  • 6Ye sou H, Besnus Y, Polet Y. Extraction of spectral information from landsat tm data and merger with SPOT panchromatic imagery--a contribution to the study of Geological structures [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1993, 48 (5): 23-26.
  • 7Shettigara V K. A generalized component substitution technique for spatial enhancement of multispectral images using a higher resolution data set[J]. Photogrammetric Engineering and Remote Sens. , 1992, 58 (5): 561-567.
  • 8Nunez J, Otazu X, Forso, et al. Multiresolution based image fusion with additive wavelet decomposition[J]. IEEE Transactions on Geosciences and Remote Sens., 1999, 37 (3): 1024 - 1211.
  • 9Moxey C E, Sangwine S J, Ell T A. Hypercomplex correlation techniques for vector image[J]. IEEE Trans. on Signal Processing, 2003, 51(7).. 1941-1953.
  • 10Moxey C E, Sangwine S J, Ell T A. Color-grayscale image registration using hypercomplex phase correlation[ C] // IEEE ICIP, 2002: 385-388.

共引文献170

同被引文献203

引证文献16

二级引证文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部