期刊文献+

改进型图像中的直线快速检测 被引量:16

Improved fast line detection method in images
下载PDF
导出
摘要 为提高数字图像中的直线的检测速度,从时频域变换和空间域变换两个角度出发,提出了一种改进型数字图像中直线快速检测方法。首先,采用小波提升提取图像中的低频轮廓信息,抑制高频噪声。然后,对像素降低后的图像进行二值化处理;基于"两点确定一条直线"以及Hough变换过程中"图像空间中一条直线上的多个点对应参数空间中一个点"的原理,按照从局部到整体的检测顺序,将二值化后图像空间中的非零点映射到参数空间中具有较大存在概率的累加单元,而不是所有可能的累加单元。最后,对累加单元进行统计,以确定图像中直线的参数。利用该方法对一幅像素为128×128的数字图像进行直线检测,耗时为213ms。该方法有效地提高了数字图像中直线检测的实时性。 In order to improve the detection speed for lines in digital images,an improved detection method was proposed by combining the time-frequency domain transform and the spatial domain transform.Firstly,the wavelet lifting was used to extract the low frequency profile information and to restrain high frequency noises.Then,the gradient of a image was computed to obtain a binary image.On the basis of the principles that a line can be determined by two points and a line in the image is mapped to a point in the Hough Transform,the non-zero pixels were mapped into the accumulator cells with great probability instead of all accumulator cells following the detection sequence from the local to the global.Finally,the accumulator cells were counted to determine the parameters of lines in the image.It costs 213 ms to detect lines in the image with pixels of 128×128 by using the method proposed in this paper,which increases the detection speed for lines in images effectively.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2010年第7期1654-1660,共7页 Optics and Precision Engineering
基金 部委级重点基金资助项目(No.6140528)
关键词 特征检测 直线检测 图像处理 HOUGH变换 小波提升 feature detection line detection image processing Hough transform wavelet lifting
  • 相关文献

参考文献16

  • 1SIAGIA C,ITTI L.Rapid biologically-inspired scene classification using features shared with visual attention[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(2):300-312.
  • 2GUILHEMRE N,DESONZ A,AVINASH C K.Vision for mobile robot navigation:a survey[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(2):237-267.
  • 3汪华章,何小海,宰文姣.基于局部和全局特征融合的图像检索[J].光学精密工程,2008,16(6):1098-1104. 被引量:13
  • 4HUANG K Y,YOU J D,CHEN K J.Hough transform neural network for seismic pattern detection[C].Proceedings of 2006 IEEE International Joint Conference on Neural Network,2006:2453-2458.
  • 5张建伟,张启衡.基于块遍历的直线边缘特征提取[J].光学精密工程,2009,17(3):662-668. 被引量:15
  • 6陈洪波,王强,徐晓蓉,陈真诚,汤井田.用改进的Hough变换检测交通标志图像的直线特征[J].光学精密工程,2009,17(5):1111-1118. 被引量:23
  • 7SHI W Z,SHAKER A.The line-based transformation model(LBTM) for image-to-image registration of high-resolution satellite image data[J].International Journal of Remote Sensing,2006,27(14):3001-3012.
  • 8NUNN C,KUMMERT A,MULLER-SCHNEIDE-NS S.A two stage detection module for traffic signs[C].Proceedings of 2008 IEEE International Conference on Vehicular Electronics and Safety,2008:271-275.
  • 9GALAMBOS C,KITTLER J,MATAS J.Gradient based progressive probabilistic Hough transform[J].Image Signal Processing,2001,148(3):158-165.
  • 10丁幼春,陈红.基于HT的多条直线检测的特点及其算法改进[J].华中农业大学学报,2008,27(6):802-806. 被引量:2

二级参考文献49

共引文献53

同被引文献149

引证文献16

二级引证文献158

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部