期刊文献+

基于双信息源的协同过滤算法研究 被引量:1

Research on dual information source model-based collaborative filtering algorithm
下载PDF
导出
摘要 为了解决数据稀疏性,针对具有专门知识背景和交互性强的项目推荐,文章提出了基于双信息源模式的协同过滤算法,该方法判断活动用户对目标项目的兴趣程度建立在相似用户推荐组(最近邻居集合)与专家推荐组基础上,把2个推荐组的建议结合起来,形成可靠的信息源;并分析各自影响活动用户对目标项目的权重,计算活动用户的最终兴趣度,实现系统推荐。 This paper proposes Dual Information Source Model-Based Collaborative Filtering Algorithm(DISCF) in view of the data sparsity and interactive project recommendation with special knowledge.This algorithm determines the users' interest degree according to two recommendation groups,namely similar users' group and expert users' group and integrates them as credible information sources.Then,it analyzes the influence of each group on target users' weight of target product and calculates the ultimate interest degree of users to fulfill the systematic recommendation.
作者 董全德
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第7期984-987,996,共5页 Journal of Hefei University of Technology:Natural Science
基金 安徽省教育厅自然科学基金资助项目(2006kj091B) 宿州学院自然科学研究资助项目(2009yzk11)
关键词 协同过滤 双信息源 可信度 平均绝对偏差 collaborative filtering(CF) dual information source credibility mean absolute error(MAE)
  • 相关文献

参考文献8

  • 1Sarwar B.Analysis of recommendation algorithms for e-commerce[C] //Proc 2nd ACM Conf Electronic Commerce (EC 00).ACM Press,2000:158-167.
  • 2Adomavicius G,Tuzhilin A.Toward the next generation of recommender systems:a survey of the state-of-the-Art and possible extensions[J].IEEE Trans Knowledge and Data Eng,2005,17(6):734-749.
  • 3Greiner R,Su X,Shen B,et al.Structural extension to logistic regression:discriminative parameter learning of belief net classifiers[J].Machine Learning,2005,59(3):297-322.
  • 4Melville P,Mooney R J,Nagarajan R.Content-boosted collaborative filtering for improved recommendations[C] //Proceedings of the 18th National Conference of Artificial Intelligence,2002:187-192.
  • 5Duhan D F.Influences on consumer use of word-of-mouth recommendation sources[J].J Academy of Marketing Science,1997,25:283-295.
  • 6Herlocker J L,Konstan J A,Terveen L G,et al.Evaluating collaborative filtering recommender systems[J].ACM Trans Information Systems,2004,22(1):5-53.
  • 7Robertson T S,Zielinski J,Ward S.Consumer behavior[M].New York:Scott,Foresman and Co,1984:5-50.
  • 8Donovan J O,Smyth B.Trust in recommender systems[C] //Proc 10th Int Conf Intelligent User Interfaces (IUI 05).New York:ACM Press,2005:167-174.

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部