期刊文献+

商空间的k-严格凸继承性 被引量:1

On the Heredity of k-Rotundity of Quotient Spaces
下载PDF
导出
摘要 利用Banach空间几何理论讨论了商空间对它的原空间k-严格凸继承性问题,得到了Banach空间X以它的可逼近子空间M为模的商空间X/M对X的k-严格凸性具有继承性,推广了前人的结果.同时,以一般Orlicz空间为例,说明了上述结论成立和可逼近条件是必要的. By a geometry of Banach spaces method the characterizations over a Heredity of k-rotundity problem about a quotient space to its original space is discussed.It is presented that if X is a Banach space with k-rotundity and M is proximal in X,then the quotient space X/M has also k-rotundity.Moreove,taking the example of Orlicz space generalized any Orlicz function,it points out that the condition making the above conclusion tenable is essential in general.
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2010年第3期280-282,共3页 Journal of Jiangxi Normal University(Natural Science Edition)
基金 国家自然科学基金(10571037)资助项目
关键词 商空间 K-严格凸 继承性 可逼近 quotient space k-rotundity Heredity approximatibility
  • 相关文献

参考文献11

  • 1Cui Yun-an,Hudzik H,Khongtham Y.Geometry of quotient spaces and priximinality[J].Annales Polonici Math,2003,82(1):9-18.
  • 2何仁义.K-强凸与局部K一致光滑空间[J].数学杂志,1997,17(2):251-256. 被引量:30
  • 3王廷辅 陈述涛.Orlicz空间的k凸性[J].哈尔滨师范大学自然科学学报,1985,1(4):11-15.
  • 4石钟锐.Orlicz空间的k凸性[J].黑龙江大学自然科学学报,1987,4(2):41-44.
  • 5曹金文,贾永进,杨建康.遗传σ-meso紧空间[J].江西师范大学学报(自然科学版),2007,31(1):17-20. 被引量:1
  • 6吴丛炘,王廷辅.Orlicz空间及应用[M].哈尔滨:黑龙江科技出版社,1983.
  • 7段丽芬,崔云安.商空间的近端点和近严格凸性[J].兰州理工大学学报,2004,30(5):133-135. 被引量:3
  • 8段丽芬,王景全,尹玉贤.商空间的若干继承性[J].通化师范学院学报,2006,27(2):4-6. 被引量:2
  • 9Chen Shu-tao.Geometry of Orlicz spaces[J].Dissertationes Math,1996,356:1-204.
  • 10Cui Yun-an,Hudzik H,Nowak M,et al.Some geometric properties in Orlicz sequence soaces equipped with Orlicz norm[J].Convex Anal,1999,6(1):91-113.

二级参考文献19

  • 1段丽芬,崔云安.商空间的近端点和近严格凸性[J].兰州理工大学学报,2004,30(5):133-135. 被引量:3
  • 2JIANG JIGUANG,TENG HUI.SOME RESULTS ABOUT COVERING PROPERTIES OF PRODUCTS[J].Chinese Annals of Mathematics,Series B,1994,15(1):53-58. 被引量:1
  • 3Wu Congxin,J Math,1993年,13卷,1期,105页
  • 4Liu Zheng,J Math Anal Appl,1990年,146卷,2期,540页
  • 5南朝勋,数学年刊.A,1990年,11卷,3期,321页
  • 6俞鑫泰,空间几何理论,1986年
  • 7俞鑫泰,Chin Ann Math B,1985年,6卷,4期,465页
  • 8俞鑫泰,华东师范大学学报,1981年,4卷,25页
  • 9Sckowski T,Stachura A.Noncompact smoothness and noncompact convexity [J].Atti Semi Mat Fis Univ Modena,1988,36:329-333.
  • 10Nan Chao-xun,Song Shou-bai.Nearly strict convexity and best approximation [J].J Math Res Exp,1997,17(4):479-488.

共引文献32

同被引文献7

  • 1Gowers W T,Maurey B.The unconditional basic sequence problem[J].AMS,1993,6(4):851-874.
  • 2Ferenczi V.Quotient hereditarily indecomposable Banach spaces[J].Canad J Math,1999,51(3):566-584.
  • 3Gonzalez M.On essentially incomparable Banach space[J].Math Z,1994,215(1):621-629.
  • 4Pietsch A,Gonzalez M.Essentially incomparable Banach spaces and Fredholm theory[J].Proc R Ir Acad A,1993,92(1):49-59.
  • 5Aiena P,Gonzalez M.Examples of improjective operators[J].Math Z,2000,233(3):471-479.
  • 6Gon(z)alez M,Herrera J.Spaces on which the essential spectrum of all the operators is finite[J].Operator Theory,2005,53(2):303-314.
  • 7Pelczy(n)ski A.Strictly singular and strictly cosingular operators[J].Bull Acad Polon Sci,Ser Sci Math AstRonom Phys,1965,13(1):31-41.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部