期刊文献+

基于视频图像序列的动目标跟踪定位技术研究 被引量:7

Research on Moving Target Tracking and Location Technology Based on Video Image Sequence
下载PDF
导出
摘要 分析了视频图像序列分析处理技术发展现状,针对当前视频图像序列运动目标自动跟踪与定位方法研究与应用中出现的算法模型普适性不足、工程化程度低等问题,文中提出了一种基于组合模型的视频图像运动目标跟踪与定位方法,从运动目标自动跟踪、定位计算以及运动趋势估计预测3个方面入手解决现有的问题,并且给出了道路监控的应用实例。 This paper analyses the development status of the video image sequence processing. Due to the lack of a universal algorithm model and the low-degree engineering in current research and application for the video image sequence of moving target automatic tracking and location, a method based on combined model is proposed to solve the problem from three aspects,including moving target automatic tracking,location,as well as trend estimation and forecast, and an application example of road monitoring is given.
作者 罗丽莉 秦晅
出处 《指挥信息系统与技术》 2010年第3期70-73,共4页 Command Information System and Technology
关键词 组合模型 视频图像 自动跟踪 目标定位 趋势估计 combined model video image automatic tracking target location trend estimation
  • 相关文献

参考文献2

二级参考文献30

  • 1Sullivan G D, Worrall A D, Tan T N, Marslin R F, Attwood C I, Baker K D. Model based vision in VIEWS. In:ESPRIT Project Report, RU 03-FR. 01, London: Reading University, 1993.
  • 2Beymer D, Mclauchlan P, Coifman B, Malik J. A real-time computer vision system for measuring traffic parameters.In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition (CVPR'97), Puerto Rico, IEEE Press, 1997. 495-501.
  • 3Koller D. Daniilidis K. Nagel H H. Model-based object tracking in monocular image sequences of road traffic scenes.International Journal of Computer Vision, 1993, 10(3):257-281.
  • 4Tan T N, Sullivan G D. Baker K D. Model-based localisation and recognition of road vehicles. International Journal of Computer Vision, 1998, 27(1):5-25.
  • 5Tan T N, Baker K D. Efficient image gradient based vehicle localization. IEEE Transactions on Image Processing,2000.9(8):1343- 1356.
  • 6Tan T N, Baker K D,Sullivan G D. 3-D structure and motion estimation from 2-D image sequences, lmageand Vision Computing, 1993, 11(4):203-210.
  • 7Wells W M. Statistical approaches to feature-based object recognition, International Journal of Computer Vision,1997, 21(1),63-98.
  • 8Lowe D G. Robust model based motion tracking through the integration of search and estimation. International Journal of Computer Vision, 1992,8(2) :113-122.
  • 9Lou J G, Yang H, Hu W M, Tan T N. An illumination invariant change detection algorithm. In:Proceedings of the 5th Asia Conference on Computer Vision (ACCV'02), Australia:AFCV, 2002.19-25.
  • 10Chang Y, Hu W M, Tan T N. Model visualization in traffic surveillance. Chinese Journal of Engineering Graphics, 2001, Supplement : 28 - 33 ( in Chinese).

共引文献8

同被引文献40

  • 1庞羽佳,王向军.利用立体视觉交汇测量方法进行靶场弹落点探测的误差分析[J].计量技术,2004(5):13-15. 被引量:3
  • 2方帅,薛方正,徐心和.基于背景建模的动态目标检测算法的研究与仿真[J].系统仿真学报,2005,17(1):159-161. 被引量:40
  • 3慈明森.理想爆炸成形弹丸终点弹道的数值模拟和实验模拟[J].弹箭技术,1994,8(2):43-48. 被引量:1
  • 4王典,程咏梅,杨涛,潘泉,赵春晖.基于混合高斯模型的运动阴影抑制算法[J].计算机应用,2006,26(5):1021-1023. 被引量:20
  • 5STAUFFER C, GRIMSON W E L. Adaptive back- ground mixture models for real-time tracking [C]. Fort Collins, CO: IEEE Computer Society Confer- ence on Computer Vision and Pattern Recognition, 1999: 246-252.
  • 6SONG Xue-hua, CHEN Jing-zhu, HE Chong, et al. A robust moving objects detection based on improved Gaussian mixture model[C]. Washington DC, USA: 2010 International Conference on Artificial Intelli- gence and Computational Intelligence, 2010: 54-58.
  • 7LUO Jin-man, ZHU Juan. Adaptive Gaussian mix- ture model based on feedback mechanism [C]. Chengdu, China: 2010 International Conference on Computer Design and Applications (ICCDA), 2010: 177-181.
  • 8WANG Jin, DONG Lan-fang. Moving objects detec- tion method based on a fast convergence Gaussian mixture[C]. Hefei, China: 2011 3rd International Conference on Computer Research and Development (ICCRD), 2011: 269-273.
  • 9LI Ying-hong, TIAN Hong-fang, ZHANG Yan. An improved Gaussian mixture background model with real-time adjustment of learning rate[C]. Kunming, China. 2010 International Conference on Information Networking and Automation ( ICINA ), 2010: 512-515.
  • 10LI Ying-hong, X1ONG Chang-zhen, YIN Yi-xin, et al. Moving object detection based on edged mixture Gaussian models[C]. Wuhan, China: International Workshop on Intelligent Systems and Applications. ISA 2009, 2009 : 1-5.

引证文献7

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部