期刊文献+

一种基于混沌变异的多目标粒子群优化算法 被引量:2

A mult-objective particle swarm optimization algorithm based on the chaotic mutation
原文传递
导出
摘要 针对多目标优化(multi-objective optimization problem,MOP)问题,特别是解集分布非均匀问题,提出一种基于混沌变异的优化算法。通过Pareto支配思想来决定粒子的飞行方向,在进化后期加入混沌变异操作,有效地避免早熟收敛现象;根据粒子群优化算法(particle swarm optimization,PSO)特有的记忆建立外部档案,动态引导微粒在每一次迭代的飞行方向。最后通过8个标准多目标测试函数进行测试,实验结果表明该算法是有效可行的,其性能比SPEA和NSGAII更优。 To solve the problem of the multi-objective optimization problems,especially the problem of solution set distribution non-uniform,an optimization algorithm was proposed based on the chaos mutation.In order to prevent effectively premature convergence phenomenon,the Pareto dominate ideology was used to determine the direction of particles and the chaos variable operating was added in the later evolution.According to the characteristic of particle swarm algorithm,the external files were established to dynamically lead the flight direction of the particles.The experimental results of eight standards test functions showed that the algorithm was effective and feasible,and its performance was better than SPEA and NSGAII.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2010年第7期18-23,共6页 Journal of Shandong University(Natural Science)
基金 广西自然科学基金资助项目(0832082 0991086) 国家民委科研基金资助项目(08GX01)
关键词 粒子群优化 混沌变异 多目标优化 PARETO支配 外部档案 particle swarm optimization chaotic mutation multi-objective optimization Pareto dominated external files
  • 相关文献

参考文献10

  • 1ROSENBERG R S. Simulation of genetic populations with biochemical properties E D ]. Ann Harbor, Michigan: University of Michigan, 1967.
  • 2DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multi-objective genetic algorithm: NSGA-II [J]. IEEE Transactions on Evolutionary Computation, 2002, 6 (2) :182-197.
  • 3ZITZLER E, THIELE L. SPEA2 : improving the strength Pareto evolutionary algorithm [ R ]. Zurich: Computer Engineering and Networks Laboratory (TIK) of Swiss Federal Institute of Technology ( ETH), 2001.
  • 4COELLO C A, LECHUGA M S. MOPSO: a proposal for multiple objective particle swarm optimization [ C]//Proceedings of the Congress on Evolutionary Computation (CEC' 2002). Piscataway: IEEE Service Center, 2002:1051-1056.
  • 5KENNEDY J, EBERHART R C. Particle swarm optimization [ C ]//Proceedings of IEEE International Conference on Neural Networks. Washington: IEEE Computer Society, 1995: 1942-1948.
  • 6COELLO C A, PULIDO G T. A micro-genetic algorithm for multiobjective optimization [ C]//Proceedings of the 1st International Conference on Evolutionary Multi-Criterion Optimization. London: Springer-Verlag, 2001: 126-140.
  • 7潘晓英,刘芳,焦李成.基于智能体的多目标社会进化算法[J].软件学报,2009,20(7):1703-1713. 被引量:16
  • 8骆晨钟,邵惠鹤.采用混沌变异的进化算法[J].控制与决策,2000,15(5):557-560. 被引量:43
  • 9郑向伟,刘弘.多目标进化算法研究进展[J].计算机科学,2007,34(7):187-192. 被引量:52
  • 10RAY T, KANG T. Multiobjective design optimization by an evolutionary algorithm [ J]. Engineering Optimization, 2001, 33 (4) : 399-424.

二级参考文献53

共引文献108

同被引文献28

  • 1Xiao Y,Peng XG,Leng M,Zhu B.The research of image collection methodfor sediment online-detection[J].Journal of computes,2010,5(6):893-900.
  • 2Ying X,Bo Y,Dajun Z,et al.Morphology Based Sediment Particle Image Binarization Algorithm Research[C].Computer Science and Electronics Engineering(ICCSEE),2012 International Conference on.IEEE,2012,3:375-378.
  • 3Bayonaá,San Miguel J C,Martínez J M.Stationary foreground detection using background subtraction and temporal difference in video surveillance[C].Image Processing(ICIP),2010 17th IEEE International Conference on.IEEE,2010:4657-4660.
  • 4Hirai J,Yamaguchi T,Harada H.Extraction of moving object based on fast optical flow estimation[C].ICCAS-SICE,2009.IEEE,2009:2691-2695.
  • 5Min H,Huazhong S,Qian L,et al.A study of moving object detection based on combining background profile difference algorithm[C].Industrial and Information Systems(IIS),2010 2nd International Conference on.IEEE,2010,1:425-428.
  • 6Buyya R, Yeo C S, Venugopal S, et al. Cloud computing and e- merging |T platforms: vision, hype, and reality for delivering computing as the 5th utility [J]. Future Generation Computer Systems, 2009,25 (6) 599-616.
  • 7Armbrust M, Fox A, Griffith R, et al. A view of cloud computing [J]. Communications of the ACM, 2010,53(4) .. 50-58.
  • 8Dean J,Ghemawat S. MapReduce: simplified data processing on large cluster[C]//Proc of the 6th Conference on Symposium on Operating System Design and Implementation (SOSDI 2004).
  • 9Mostaghim S, Teich J. Strategies for finding good local guides in multi-objective particle swarm optimization[C]//Proceeding of the 2003 IEEE Swarm Intelligence Symposium Indianapolis. Dallas: ACM Press, 2003 : 26-33.
  • 10Fang Yi-qiu, Wang Fei, Ge Jun-wei. A task scheduling algorithm based on load balancing in cloud computing[C]//Proceedings of the 2th International Conference on Web Information Systems and Mining. Berlin, Germany: Springer-Verlag, 2010 : 156-162.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部