期刊文献+

基于调和平均测地线核的局部线性嵌入算法 被引量:1

A local linear embedding agorithm based on the harmonic-mean geodesic kernel
原文传递
导出
摘要 为解决现有局部线性嵌入算法不适合处理非均匀分布数据和未利用距离远点信息的问题,提出相应的改进算法。首先引入测地线距离,以便能利用远点信息;然后使用调和平均规范化构造调和平均测地线核矩阵,使算法能更好地处理分布不均匀数据并具有鲁棒性。在UCI数据集上的实验结果表明,改进后的算法能够取得比局部线性嵌入算法更好的降维效果。 An improved algorithm was proposed to overcome the shortcomings of the existing local linear embedding algorithm that was not suitable for non-uniform distribution data and did not use the information of distant points.First,the geodesic-distance was introduced into the new algorithm in order to take advantage of the information of distant points,and then the harmonic-mean geodesic-kernel matrix was constructed by using the harmonic-mean standardization,which could process robustly non-uniform distribution data.The results of the experiments on UCI data sets showed that the improved algorithm could obtain better performance than the classical local linear embedding algorithm on dimension reduction.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2010年第7期55-59,共5页 Journal of Shandong University(Natural Science)
基金 福建省自然科学基金资助项目(2007J0016 2008J04004) 福建省青年人才创新基金资助项目(2006F3045) 福建省高校服务海西建设重点资助项目(201008)
关键词 局部线性嵌入 调和平均 核方法 测地线 流形学习 local linear embedding harmonic-mean kernel trick geodesic manifold learning
  • 相关文献

参考文献13

  • 1JAIN A, DUIN R, MAO J. Statistical pattern recognition:a review[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22( 1 ) :4-37.
  • 2SEBASTIAN H, LEE D. The manifold ways of perception[J]. Science, 2000, 290(5500) :2268-2269.
  • 3陈省身,陈维桓.微分几何讲义[M].北京:北京大学出版社,2002.
  • 4罗四维,赵连伟.基于谱图理论的流形学习算法[J].计算机研究与发展,2006,43(7):1173-1179. 被引量:76
  • 5SAUL L, ROWEIS S. GLOBALLY T. Fit locally:unsupervised learning of low dimensional manifolds [ J ]. Journal of Machine Learning Research, 2003 (2) : 119-155.
  • 6TENENBAUM J, SILVA V, LANGFORD J. A global geometric framework for nonlinear dimensionality reduction [ J ]. Science, 2000, 290(12) :2319-2323.
  • 7BELKIN M, NIYOGI P. Laplacian eigenmaps for dimensionality reduction and data representation [ J ]. Neural Computation, 2003, 15(6):1373-1396.
  • 8HE X, NIYOGI P. Locality preserving projections [ C ]//Advances in Neural Information Processing Systems. Cambridge:M IT Press, 2003:291-299.
  • 9RIDDER D, KOUROPTEVA O, OKUN O, et al. Supervised locally linear embedding[ C]. Proceedings of the 2003 Joint International Conference on Artificial Neural Networks and Neural Information Processing. Berlin, Heidelberg:Springer-Verlag, 2003 : 333-341.
  • 10DONOHO D, GRIMES C. Hessian eigenmaps :new locally linear embedding techniques for high-dimensional data[ J]. Proceddings of the National Academy of Sciences, 2003, 100(10) :5591-5596.

二级参考文献43

  • 1张振跃,查宏远.线性低秩逼近与非线性降维[J].中国科学(A辑),2005,35(3):273-285. 被引量:8
  • 2杨剑,李伏欣,王珏.一种改进的局部切空间排列算法[J].软件学报,2005,16(9):1584-1590. 被引量:36
  • 3H. Sebastian Seung, Daniel D. Lee. The manifold ways of perception [J]. Science, 2000, 290(12): 2268-2269
  • 4Andrew Y. Ng, Michael I. Jordan, Yair Weiss. On spectral clustering: Analysis and an algorithm [G]. In: Advances in NIPS 14. Cambridge, MA: MIT Press, 2001. 849-856
  • 5J. Shawe-Taylor, N. Cristianini, J. Kandola. On the concentration of spectral properties [G]. In: Advances in NIPS 14. Cambridge, MA: MIT Press, 2001. 511-517
  • 6F. R. K. Chung. Spectral Graph Theory [M]. Fresno:American Mathematical Society. 1997
  • 7B. Scholkopf, A. Smola, K-R. Muller. Nonlinear component analysis as a kemel eigenvalue problem[J].Neural Computacation, 1998, 10(5): 1299-1319
  • 8T. Hastie, W. Stuetzle. Principal curves[J]. Journal of the American Statistical Association, 1989, 84(406) : 502-516
  • 9T. Cox, M. Cox. Multidimensional Scaling [M]. London:Chapman & Hall, 1994
  • 10J. B. Tenenbaum, V. de Silva, J. C. Langford. A global geometric framework for nonlinear dimensionality reduction [J].Science, 2000, 290(12): 2319-2323

共引文献75

同被引文献11

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部