摘要
为解决现有局部线性嵌入算法不适合处理非均匀分布数据和未利用距离远点信息的问题,提出相应的改进算法。首先引入测地线距离,以便能利用远点信息;然后使用调和平均规范化构造调和平均测地线核矩阵,使算法能更好地处理分布不均匀数据并具有鲁棒性。在UCI数据集上的实验结果表明,改进后的算法能够取得比局部线性嵌入算法更好的降维效果。
An improved algorithm was proposed to overcome the shortcomings of the existing local linear embedding algorithm that was not suitable for non-uniform distribution data and did not use the information of distant points.First,the geodesic-distance was introduced into the new algorithm in order to take advantage of the information of distant points,and then the harmonic-mean geodesic-kernel matrix was constructed by using the harmonic-mean standardization,which could process robustly non-uniform distribution data.The results of the experiments on UCI data sets showed that the improved algorithm could obtain better performance than the classical local linear embedding algorithm on dimension reduction.
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2010年第7期55-59,共5页
Journal of Shandong University(Natural Science)
基金
福建省自然科学基金资助项目(2007J0016
2008J04004)
福建省青年人才创新基金资助项目(2006F3045)
福建省高校服务海西建设重点资助项目(201008)
关键词
局部线性嵌入
调和平均
核方法
测地线
流形学习
local linear embedding
harmonic-mean
kernel trick
geodesic
manifold learning