期刊文献+

基于特征缺省的最小类内方差支持向量机 被引量:1

Minimum within-class variance SVM with absent features
原文传递
导出
摘要 最近提出的基于特征缺失的支持向量机(support vector machine with absent features,AF-SVM)在处理具有特征缺失的数据分类时,得到的分类超平面不能很好地适应数据的总体分布,并存在两类误分的比例相差比较大的问题。为此,本文通过引入最小类内方差支持向量机(minimum class variance SVM,MCVSVM)分类机制,提出了基于特征缺失的最小类内方差支持向量机(minimum within-class variance SVM with absent features,AF-V-SVM)。AF-V-SVM一方面可以依据数据集的分布特性,改善分类超平面的方向性;另一方面,通过自由设置分类间隔的定义空间,调整误分的比例。实验表明,与其他基于特征缺省的分类方法相比,该方法不仅提高了分类正确率而且使分类效果更加合理。 In the classification of data with absent features,the recently proposed support vector machine with absent features(AF-SVM) has some drawbacks: the obtained classification hyper plane with AF-SVM can not adapt well to the data's overall distribution,and the proportion of misclassified data differs greatly between the two classes.To overcome these drawbacks,a minimum within-class variance SVM with absent features(AF-V-SVM) was proposed based on the technology of minimum class variance SVM(MCVSVM).On the one hand,AF-V-SVM could improve the direction of the classification hyper plane with the information of the distribution feature of the data set;on the other hand,this method adjusted the proportion of misclassified data by freely setting the definition space of the classification margin.Experiments showed that the method in this paper was superior to other absent features based classification methods in the aspects of classification accuracy and rationality.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2010年第7期102-107,113,共7页 Journal of Shandong University(Natural Science)
基金 江苏省自然科学基金资助项目(BK2009067)
关键词 特征缺省 类内方差 支持向量机 模式分类 feature absence within-class variance support vector machine pattern classification
  • 相关文献

参考文献12

  • 1Nello Cristianini , John Shawe Taylor. An introduction to support vector machines and other kernel-based learning methods [ M ]. Cambridge University Press, 2003.
  • 2LITTLE R J A, RUBIN D B. Statistical analysis with missing data [M]. 2nd ed. New York: Wiley,1987.
  • 3ROTH P L. Missing data: a conceptual review for applied psychologists [J]. Personnel Psychology, 1994, 47 (3) :537-560.
  • 4KAPOOR A. Learning discriminative models with incomplete data [ D ]. Cambridge, United Kingdon: School of Architecture and Planning, Massachusetts Institute of Technology, 2006.
  • 5SCHAFER J L. Analysis of incomplete multivariate dataE M]. London: Chapman & HaU/CRC Press, 1997.
  • 6Gal Chechik, Geremy Heitz. Max-margin classification of data with absent features [ J ]. Journal of Machine Learning Research, 2008, 9(1) : 1-21.
  • 7ZAFEIRIOU S, TEFAS A, PITAS I. Minimum class variance support vector machines [J].. IEEE Transactions on Image Processing, 2007, 16(10) :2551-2564.
  • 8VAPNIK V N. The nature of statistical learning theory [ M]. New York:Springer-Verlag, 2000.
  • 9张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2273
  • 10SUN Wenyu, YUAN Yaxiang. Optimization theory and methods [ M ]. New York: Springer-Verlag, 2005.

二级参考文献8

共引文献2279

同被引文献20

  • 1苟博,黄贤武.支持向量机多类分类方法[J].数据采集与处理,2006,21(3):334-339. 被引量:63
  • 2SKLANSKY J, MICHELOTTI L. Locally trained piece-wise linear classifiers [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1980, 2(2) :101-111.
  • 3PARK Y, SKLANSKY J. Automated design of multipleclass piecewise linear classifiers [ J ]. Classification, 1989, 6(1) :195-222.
  • 4HIROSHI TENMOTO, MINEICHI KUDO, MASARU SHIMBO. Piecewise linear classifiers with an appropriate number of hyperplances [ J ]. Pattern Recognition, 1998, 31(11) :1627-1634.
  • 5HERMAN G T, YEUNG K T D. On piecewise-linear classification[ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(7) : 782-786.
  • 6MANGASARIAN O L, SETONO R, WOLBERG W H. Pattern recognition via linear programming : theory and applications to medical diagnosis [ C ]. Philadelphia: ColemanT F, 1990:22-31.
  • 7CHAI Bingbing, HUANG Tong, ZHUANG Xinhua, et al. Piecewise linear classifiers using binary tree structure and genetic algorithm[J]. Pattern Recognition, 1996, 39 (11) : 1905-1917.
  • 8KOSTIN ALEXANDER. A simple and fast multi-class piecewise linear pattern classifier [ J ]. Pattern Recognition, 2006, 39(11) :1949-1962.
  • 9LI Yujian, LIU Bo, YANG Xinwu, et al. Multiconlitron: a general piecewise linear classifier [J ]. IEEE Transactions on Neural Networks, 2011, 22(2):276-289.
  • 10PUJOL ORIOL, MASIP DAVID. Geometry-based ensembles : toward a structural characterization of the classification boundary [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31 ( 6 ) : 1140- 1146.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部