期刊文献+

一种基于分类精度的特征选择支持向量机 被引量:3

A kind of feature selection based on classification accuracy of SVM
原文传递
导出
摘要 在综合序列前向选择(sequential forward selection,SFS)方法和广义序列前向选择(generalized sequential forward selection,GSFS)方法的基础上,提出了基于分类精度的特征选取(sequential forward selection based on classification accuracy,CA-SFS)方法。它依次改变GSFS方法中的r值,并以支持向量机(support vector machine,SVM)作为分类器,将得出的分类精度作为准则函数对特征进行取舍。仿真实验表明CA-SFS算法不但选择了较少的特征,而且取得了较好的分类效果。 The sequential forward selection based on classification accuracy(CA-SFS) was proposed by associating sequential forward selection(SFS) with generalized sequential forward selection(GSFS).It varied the value of r in GSFS and employd SVM(support vector machine)as the classifier.The classification accuracy was taken as a criterion to decide the retention or elimination of features.Simulations showed that CA-SFS performed well both in selecting fewer features and classifying samples.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2010年第7期119-121,126,共4页 Journal of Shandong University(Natural Science)
关键词 特征选择 支持向量机 分类精度 仿真 feature selection support vector machine classification accuracy simulation
  • 相关文献

参考文献8

  • 1HAN JIAWEI, KAMBER M. Data mining: concepts and techniques[ M]. 2nd ed. Beijing: China Machine Press, 2006.
  • 2BLUM A L, LANGLEY P. Selection of the relevant features andexamples in machine learning [J]. Artifical Intelligence, 1997, 97:245-271.
  • 3孙见青,汪荣贵,胡韦伟,李守毅.一种新的基于NGA/PCA和SVM的特征提取方法[J].系统仿真学报,2007,19(20):4823-4826. 被引量:6
  • 4KUDO M, SKLANSKY J. Comparison of algorithms that select features for pattern classifiers[ J]. Pattern Recognition, 2000, 33( 1 ) :25-41.
  • 5VAPNIK V N. The nature of statistical learning theory [ M ]. New York: Springer Vedag, 2000.
  • 6HETHCH S, BAY S D. The UCI KDD archive [ DB/ OL ]. [ 2009-04-08 ]. http ://kdd. ics. uci. edu.
  • 7KING R D. Statlog databases [ DB/OL ]. [ 2009-08-09 ]. http ://www. 1 lace. up. pt./ML/statlog/datasetsmtml.
  • 8李烨,尹汝泼,蔡云泽,许晓鸣.基于离散化的支持向量机特征选择[J].计算机工程,2006,32(11):16-17. 被引量:4

二级参考文献20

  • 1乔立岩,彭喜元,马云彤.基于遗传算法和支持向量机的特征子集选择方法[J].电子测量与仪器学报,2006,20(1):1-5. 被引量:24
  • 2Liu Huan, Setiono R. Feature Selection via Discretization [J]. IEEE Transaction on Knowledge and Data Engineering, 1997, 9(4).
  • 3Nguyen S H, Skowron A. Quantization of Real Value Attributes[C].Proc. of the Second Joint Annual Conference on Information Sciences,Wrightsville Beach, North Carolina, USA, 1995.
  • 4Pawlak Z. Rough Sets-Theoretical Aspects of Reasoning About Data [M]. Dordrecht: Kluwer Academic Publishers, 1991.
  • 5Nguyen S H. Some Efficient Algorithms for Rough Set Methods[C].Proceedings of the Conference of Information Processing and Management of Uncertainty in Knowledge-based Systems, Granada,Spain, 1996-07: 1451-1456.
  • 6Hettich S, Bay S D. The UCI KDD Archive[DB/OL].http://kdd.ics.uci.edu/, 1999.
  • 7King R D. Statlog Databases. Department of Statistics and Modelling Science[DB/OL]. http://www.liacc.up.pt/ML/statlog/datasets.html,1992.
  • 8Chang Chihchung, Lin Chinjen. LIBSVM: A Library for Support Vector Machines. http://www.csie.ntu.edu.tw/-cjlin/libsvm, 2001.
  • 9Boser B, Guyon I, Vapnik V. A Training Algorithm for Optimal Margin Classifiers[C]. Proceedings of the Fifth Annual Workshop on Computational Learning Theory, 1992.
  • 10Ventura D, Martinez T R. An Empirical Comparison of Discretization Methods[C]. Proceedings of the Tenth International Symposium on Computer and Information Sciences, 1995:443-450

共引文献7

同被引文献38

  • 1万海平,何华灿.基于谱图的维度约简及其应用[J].山东大学学报(理学版),2006,41(3):124-127. 被引量:1
  • 2刘慧,马军,雷景生,连莉.基于特征域词频的邮件过滤方法的研究[J].山东大学学报(理学版),2006,41(3):134-138. 被引量:1
  • 3李国和.基于类扩张矩阵的信息系统特征选取[J].计算机工程,2006,32(17):52-54. 被引量:2
  • 4陈彬,洪家荣,王亚东.最优特征子集选择问题[J].计算机学报,1997,20(2):133-138. 被引量:96
  • 5KOHAVI R, JOHN G H. Wrappers for feature subset selection[ J]. Artificial Intelligence, 1997 (1-2) :273-324.
  • 6LIU H, MOTODA H. Feature selection for knowledge discovery & data mining[ M ]. Boston : Kluwer Academic Publishers, 1998.
  • 7KIRA K, RENDELL L A. A practical approach to feature selection[ C ]//Proceedings of International Conference on Machine Learning. Aberdeen: Morgan Kaufman, 1992 : 249-256.
  • 8KIRA K, RENDELL L A. The feature selection problem: traditional methods and a new algorithm [C ]//Proceedings of the Tenth National Conference on Artificial Intelligence. Menlo Park: MIT Press, 1992: 129-134.
  • 9KONONENKO I. Estimating attributes: analysis and extension of RELIEF[ C ]//Proceedings of the European Conference on Machine Learning. New York. Springer, 1994 : 171-182.
  • 10Robnik-Sikonja M, Kononenko I. Theoretical and empirical analysis of Relief and RReliefF [J].Machine Learning, 2003 (53) :23-69.

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部