期刊文献+

双包层光纤激光器温度分布数值分析 被引量:2

A numerical analysis on the distribution of temperatures in the double-cladding fiber laser
下载PDF
导出
摘要 光纤内的温升是限制高功率双包层光纤激光器发展的重要因素.本工作在分析热沉积分布的基础上,对双包层光纤激光器的温度分布进行了定量研究,并进一步研究泵浦结构和泵浦方式对光纤温度分布的影响,探讨改善高功率双包层光纤激光器热问题的途径,从而为双包层光纤激光器优化设计提供指导.研究结果表明,双端泵浦的双包层光纤激光器光纤两端的温升显著高于中部的温升,两段温度很高.采用多段非均匀掺杂光纤泵浦结构和侧面泵浦方式可以有效的改善光纤内的温度分布,降低温升.设定每端泵浦功率P0=315W,双端泵浦单段均匀吸收系数光纤、三段和五段非均匀吸收系数光纤时,温度分布数值计算结果表明,光纤纤芯最高温度分别约为:414K、357K和336K,因此,采用多段非均匀泵浦结构可以有效的降低光纤中的最高温度.此外,本研究以3段侧面泵浦为例来研究侧面泵浦方式对温升的抑制作用.总泵浦功率仍设定为630W,温度分布数值计算结果表明,光纤中的最高温度降低到了344K. Temperature rise is the bottleneck in the development of high power doulble-cladding fiber (DCF) lasers. Based on a numerical analysis of the distribution of beat deposition, the distribution of temperatures in fiber is quantita{ively studied, and the influence of the pumping structure and the pumping method on the distribution of temperature in fiber is also researched. The measurements of improvement of the thermal property of DCF lasers are discussed in this work, which are valuable for the optimization of designs of DCF lasers. In the traditional double-end-pumped DCF lasers, the temperature rise in the two ends of DCF is obviously higher than that in the middle part of DCF. The results of study show that the uneven doped multi segments pumping structure and the side pumping method can efficiently optimize the distribution of temperature and decrease the temperature rise. The pumping power of each end of the double-end-pumped DCF laser is kept at 315 W. The numerical results of the temperature distribution show that, when the gain fiber is one even doped segment, three uneven doped segments and five uneven doped segments, the highest temperature in the fiber is 414 K, 375 K, and 336 K, respectively. Therefore, the uneven doped multi-segments pumping structure can effectively decrease the temperature rise in DCF. The three segments side-pumped DCF laser is studied in this work. The total pumping power is 630 W. The numerical results of the temperature distribution show that the highest temperature decreases to 344 K. Therefore, the side-pumping method can efficiently suppress the temperature rise in DCF lasers.
出处 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第4期412-418,共7页 Journal of Nanjing University(Natural Science)
基金 上海市科委光科技专项(05DZ22001)
关键词 温度分布 双包层光纤 激光器 数值分析 distribution of temperature, double-cladding fiber, laser, numerical analysis
  • 相关文献

参考文献10

  • 1Jeong Y,Sahu J K,Payne D N,et al.Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power.Optics Express,2004,12(25):6088-6092.
  • 2Carter A,Samson B,Tankala K,et al.Damage mechanisms in components for fiber lasers and amplifiers.Proceedings of the Society of Photo-optical Instrumentation Engineers,2005,5647:561-571.
  • 3Zhou J,Lou Q,Kong L,et al.An 115W Ytterbium-doped fiber laser.Chinese Physics Letter,2004,21(6):1083-1085.
  • 4Dong X,Qihong L,Jun Z.Comparison of Ybdoped fiber laser with one-end and double-end pumping configuration.Optics and Laser Technology,2005,39(4):871-874.
  • 5缪鹏程,米小兵,张淑仪,张仲宁,洪毅.超声红外热像检测中缺陷发热的瞬态温度场的有限元分析[J].南京大学学报(自然科学版),2005,41(1):98-104. 被引量:20
  • 6朱洪涛,楼祺洪,周军,漆云凤,董景星,魏运荣.双包层光子晶体光纤激光器散热能力的理论研究[J].光子学报,2009,38(1):60-63. 被引量:6
  • 7Wang Y,Xu C,Po H.Thermal effects in kilowatt fiber lasers.IEEE Photonics Technology Letters,2004,16(1):63-65.
  • 8Wang Y,Xu C,Po H.Analysis of raman and thermal effects in kilowatt fiber lasers.Optics Communications,2004,242:487-502.
  • 9Ripin D J,Goldberg L.High efficiency sidecoupling of light into optical fibers using imbedded v-grooves.Electronics Letters,1995,31(25):2204-2205.
  • 10Ou P,Yan P,Gong M L,et al.Multi-coupler side-pumped Yb-doped double-clad fiber laser and pump light leakage at coupler.Electronics Letters,2004,40(7):418-470.

二级参考文献14

  • 1唐灿,刘永智.光子晶体光纤的研究与应用[J].光电子技术,2005,25(3):181-186. 被引量:3
  • 2JEONY Y,SAHU J K,PAYNE D N,et al. Yetterbium doped large-core fiber laser with 1. 36kW continuous-wave output power[J]. Elect Lett ,2004,40(8) :470-471.
  • 3ZHOU J,LOU Q,KONG L,et al. A 115 W Ytterbium doped fiber laser[J]. Chinese Phys Lett ,2004,21(6) : 1083-1085.
  • 4CARTER A, SAMSON B, TANKALA K, et al. Damage mechanisms in components for fibre lasers and amplifiers[C]. SPIE, 2005,5647 : 561-571.
  • 5BENABID F, KNIGHT J C, RUSSELL P, et al. Stimulate Raman scattering in hydrogen-filled hollow-core photonic crystal fiber[J]. Science, 2002,298(5592) : 399-402.
  • 6LIMPERT J, SCHREIBER T, NOLTER S, et al. High-power air-clad large-mode-area photonic crystal fibre laser[J]. Opt Express,2003,11(7) :818 823.
  • 7LIMPERT J,SCHREIBER T, LIEM A,et al. Themo-optical properties of air-clad photonic crystal fiber lasers in high power operation[J]. Opt Express ,2003,11(22):2982-2990.
  • 8Favro L D, Han X Y, Zhong O Y, et al. Sonic IR Imaging of Cracks and Delaminations. Review of Scientific Instruments, 2000,71 : 2 418-2 421.
  • 9Favro L D, Han X Y, Zhong O Y, et al. Thermosonic imaging of cracks and delaminations.Progress in Natural Science, 2001, 11(Suppl) : 133-136.
  • 10Wang X C, Shao M. FEM simulation of temperature fields during the laser forming of sheet metal.Progress of Materials Processing Technology,1998,74: 89-95.

共引文献24

同被引文献16

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部