期刊文献+

一维水击波的高精度数值模拟 被引量:9

ENO Scheme-based Numerical Simulation on One-dimensional Water Hammer Wave
下载PDF
导出
摘要 用本质无振荡ENO、TVD格式以及MacCormark和Lax-Friedrichs格式对一维水击模型进行数值模拟。结果表明,Lax-Friedrichs和二阶MacCormark格式在间断处有较大的数值耗散,计算精度较低,后者还存在明显的虚假数值振荡;TVD格式在光滑区具有高阶精度,在间断附近能在2个计算网格步长的范围内被光滑化,数值耗散较小;ENO格式数值解在间断附近无虚假数值振荡,数值解耗散很小,对间断具有较强的分辨能力和捕捉能力,能够很好地模拟水击波的变化过程。另外,ENO格式对计算网格的要求较TVD格式低,数值计算性能稳定。 The one-dimensional water hammer model is calculated with the ENO scheme which is widely used in dam-break flow in recent years.The results calculated by ENO scheme were compared with the solutions calculated with TVD,MacCormark and Lax-Friedrichs schemes.The MacCormark and Lax-Friedrich schemes have great numerical dissipation at the discontinuity,and the MacCormark scheme has obvious numerical oscillation;the TVD scheme is lower dissipative,but it requires very accurate calculating grid;the ENO scheme has high accuracy and good stability and no numerical oscillatory at the discontinuity.The ENO scheme can effectively simulate the water hammer even the grid is simpler than the TVD scheme.
出处 《水力发电》 北大核心 2010年第4期79-81,共3页 Water Power
关键词 ENO格式 TVD格式 水击 间断 数值模拟 ENO scheme TVD scheme water hammer discontinuity numerical simulation
  • 相关文献

参考文献8

二级参考文献14

  • 1GARCIA R,KAHAWITA R A.Numerical solution of the St.Venant equations with MacComack finite-difference scheme[J].Int J Numer Methods in Fluids,1986(6):259-274.
  • 2FENNEMA R J,CHAUDHRY M H.Implicit methods for two-dimensional unsteady free-surface flows[J].J Hydr Res,Delft,The Netherlands,1989,27(3):321-332.
  • 3SAVIC L J,HOLLY F M,Jr..Dambreak flood waves computed by modified Gonunov method[J].J Hydr Res,Delft,The Netherlands,1993,31(2):187-204.
  • 4HARTEN A.High resolution schemes for hyperbolic conservation laws[J].J Comp Phys,1983,49:357-393.
  • 5SENKA Vuknovic,LUKA Sopta.ENO and WENO Schemes with the Exact Conservation Property for One-Dimensional Shallow Water Equations[J].Journal of Computational Physics,2002,179:593-621.
  • 6SHU C W,OSHER S.Effient implementation of essentially nonoscillatory shock capturing schemes[J].J Comp Phy,1988,77(2):439-471.
  • 7ROE P L.Approximate riemann solvers,parameter vectors and difference schemes[J].J Comput Phys,1981,43:357-367.
  • 8Harten A. High Resolution Schemes for Hyperbolic Conservation Laws. J. of Comp Phys, 1983, (49) :357-393.
  • 9王嘉松.TVD格式数值模拟溃坝波的研究.大连:大连理工大学土木系.1998:31-38.
  • 10傅德薰,马延文.高精度差分格式及多尺度流场特性的数值模拟[J].空气动力学学报,1998,16(1):24-24. 被引量:17

共引文献114

同被引文献96

引证文献9

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部