期刊文献+

Duffing-Van der pol系统的Hopf分岔 被引量:4

Hopf bifurcation of a Duffing-Van der pol system
下载PDF
导出
摘要 将保守Duffing系统作为未扰系统,并对它分四种情形进行了严格求解。用Melnikov函数方法研究了Duffing-Vanderpol系统的次谐分岔,获得了Duffing-Vanderpol系统的Hopf分岔条件。根据这些条件,在参数空间中确定了Hopf分岔曲线。在分岔曲线上取参数进行了数值模拟,所获得的奇、偶阶Hopf分岔与理论分析的结果完全一致。 Duffing equation x··+Gx+ξx3=0 was taken as a non-perturbed Hamiltonian system in a Duffing-van der pol system x··+Gx+ξx3+εβ(1+ηx2)x·=εf cos ωt,its four conditions were solved rigorously.Subharmonic bifurcation of the Duffing-van der pol system was studied by using the sub-Melnikov method,Hopf bifurcation conditions were obtained for the Duffing-van der pol system.Hopf bifurcation curves were gained based on the bifurcation conditions in the parameter space.On the bifurcation curves,parameters were taken to do numerical simulations,odd number order and even number order Hopf bifurcations obtained were in correspondence with the theoretical analyses.
作者 符五久
出处 《振动与冲击》 EI CSCD 北大核心 2010年第7期204-209,共6页 Journal of Vibration and Shock
基金 江西省教育厅科技项目(GJJ09265)
关键词 Duffing-Van der pol系统 Melnikov函数方法 HOPF分岔 JACOBI椭圆函数 Duffing-Van der pol system sub-Melnikov function method Hopf bifurcation Jacobi ellipse function
  • 相关文献

参考文献7

二级参考文献40

  • 1唐驾时,尹小波.一类强非线性振动系统的分叉[J].力学学报,1996,28(3):363-369. 被引量:24
  • 2刘曾荣.混沌的微扰判据[M].上海:上海科技教育出版社,1992..
  • 3[1]Baiaj A K.Resonant parametric perturbations of the Hopf bifurcation[J].J.Math.Anal.Appl.115,1986:214-224.
  • 4[2]Kath W L. Resonance in periodically perturbed Hopf bifurcation [J].J.Appl.Math.65,1981,95-112.
  • 5[6]Guckenheimer J and Holmes P Nonlinear Oscillations.Dynamical systems and Bifurcation of Vector Fields[M].New York.(1983).
  • 6Chen H S Y,Int J Nonlinear Mechanics,1996年,26卷,1期,59页
  • 7Chen S H,JSV,1996年,193卷,4期,751页
  • 8Chen S H,Int J Nonlinear Mechanics,1991年,26卷,2期,367页
  • 9李炳熙,高维动力系统的周期轨道.理论和应用,1984年
  • 10刘曾荣,混沌的微扰判据,1992年

共引文献33

同被引文献37

  • 1楼京俊,何其伟,朱石坚.多频激励软弹簧型Duffing系统中的混沌[J].应用数学和力学,2004,25(12):1299-1304. 被引量:19
  • 2姚宝恒,郑连宏,杨霞菊,佟德纯,陈兆能.Duffing振子相变检测中一种新的量化测度[J].振动与冲击,2006,25(1):51-53. 被引量:6
  • 3Jiang R G, Zhu S J, He L, et al. Prospect of applying controlling chaotic vibration in the waterborne -noise confrontation, 18th biennial conference on mechanical vibration and noise[C].ASME, Pitsburgh,USA, 2001.
  • 4Z Xu, Y K Cheung.A non-linear scales method for strongly non-linear oscillators[J] Nonlinear Dynamics,1995,7(3): 285- 299.
  • 5Allwright D J. Harmonic balance and the Hopf bifurcation theorem[J]. Math. Proc. of Cambridge Phil. Soc., 1977, 82:453-467.
  • 6Mees A I, Chua L O. The Hopf bifurcation theorem and its applications to nonlinear oscillations in circuits and systems[J]. IEEE Trans. Circ. Sys., 1979, 26: 235-254.
  • 7Hassard B D, Kazarinoff N D, Wan Y H. Theory and applications of hopf bifurcation[M]. Cambridge: Cambridge Univ. Press, 1981.
  • 8Guckenheimer J, Holmes P J. Nonlinear oscillations, dynamical system, and bifurcations of vector fields[C].Springer-Verlag, Berlin, 1983.
  • 9Wiggins S. Introduction to applied nonlinear dynamical system and chaos[M]. New York : Springer2 Verlag ,1990.
  • 10Moiola J L, Chen G. Hopf bifurcation analysis: a frequency domain approach[C]. World Scientific, Singapore, 1996.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部